

University of Kentucky UKnowledge

Theses and Dissertations--Civil Engineering

Civil Engineering

2016

BRIDGE END SETTLEMENT EVALUATION AND PREDICTION

Jiwen Zhang
University of Kentucky, zd_wen@126.com
Digital Object Identifier: http://dx.doi.org/10.13023/ETD.2016.155

Recommended Citation

Zhang, Jiwen, "BRIDGE END SETTLEMENT EVALUATION AND PREDICTION" (2016). Theses and Dissertations--Civil Engineering. 40.

http://uknowledge.uky.edu/ce_etds/40

This Doctoral Dissertation is brought to you for free and open access by the Civil Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Civil Engineering by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student's advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student's thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above.

Jiwen Zhang, Student

Dr. Timothy R.B. Taylor, Major Professor

Dr. Yi-Tin Wang, Director of Graduate Studies

BRIDGE END SETTLEMENT EVALUATION AND PREDICTION

DISSERTATION

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Engineering at the University of Kentucky

By

Jiwen Zhang

Lexington, Kentucky

Director: Timothy R.B. Taylor, Professor of Civil Engineering Lexington, Kentucky 2016

Copyright[©] Jiwen Zhang 2016

ABSTRACT OF DISSERTATION

BRIDGE END SETTLEMENT EVALUATION AND PREDICTION

A bridge approach is usually built to provide a smooth and safe transition for vehicles from the roadway pavement to the bridge structure. However, differential settlement between the roadway pavement resting on embankment fill and the bridge abutment built on more rigid foundation often creates a bump in the roadway. Previous work examined this issue at a microscopic level and presented new methods for eliminating or minimizing the effects at specific locations.

This research studies the problem at a macroscopic level by determining methods to predict settlement severity to assist designers in developing remediation plans during project development to minimize the lifecycle costs of bridge bump repairs. The study is based on historic data from a wide range of Kentucky roads and bridges relating to bridge approach inspection and maintenance history. A macro method considering a combination of maintenance times, maintenance measures, and observed settlement was used to classify the differential settlement scale as minimal, moderate, and severe, corresponding to the approach performance status good, fair, and poor. A series of project characteristics influencing differential settlement were identified and used as parameters to develop a model to accurately predict settlement severity during preliminary design. Eighty-seven bridges with different settlement severities were collected as the first sample by conducting a survey of local bridge engineers in 12 transportation districts. Sample two was created by randomly selecting 600 bridges in the inspection history of bridges in Kentucky. Ordinal and/or multinomial logistic regression analyses were implemented to identify the relationships between the levels of differential settlement and the input variables. Two predictive models were developed. Prediction of bridge approach settlement can play an important role in selecting proper design, construction, and maintenance techniques and measures. The users can select one or two models to predict the approach settlement level for a new bridge or an existing bridge with different purposes.

The significance of this study lies in its identification of parameters that had the most influence on the settlement severity at bridge ends, and how those parameters interacted in developing of a prediction model. The important parameters include geographic regions, approach age, average daily traffic (ADT), the use of approach slabs, and the foundation

soil depth. The regression results indicate that the use of approach slabs can improve the performance of approaches on mitigating the problem caused by differential settlement. In addition, current practices regarding differential settlement prediction and mitigation were summarized by surveying the bridge engineers in 5 transportation districts.

KEYWORDS: bump at the end of the bridge, bridge approach, differential settlement, approach slab, prediction model, logistic regression

Jiwen Zhang	
Student's Signature	
4/27/2016	
Date	

BRIDGE END SETTLEMENT EVALUATION AND PREDICTION

By

Jiwen Zhang

Dr. Timothy R. B. Taylor
Director of Dissertation

Dr. Yi-Tin Wang
Director of Graduate Studies

4/27/2016

Date

To my parents, wife, and the coming baby.

ACKNOWLEDGEMENTS

I am very grateful to everyone who has contributed and supported me during my doctoral studies. Firstly, I would like to express my gratitude to my advisor Dr. Timothy R. B. Taylor for his guidance, motivation, and incessant assistance from the beginning when I firstly entered into the United States to the completion of my program. I also would like to acknowledge the other two professors from the group of construction Dr. Gabriel B. Dadi and Dr. William F. Maloney for their support and encouragement at different phases of my stay at the University of Kentucky.

My gratitude is extended to the rest of my dissertation committee members, Dr. Issam Elias Harik, Dr. Arnold J. Stromberg, and the outside examiner Dr. Christina M. Payne for their valuable comments and advice. Appreciation is expressed to my colleague Roy Sturgill for his help during my doctoral studies. Sincere thanks to the graduate students in the department of Civil Engineering Ying Li, Huang Liu, Hossein Karimi, Elyas Jazayeri, Xi Wang, Yuxia Ji, and Chao Xu.

This research program SPR14-486 is funded by the Kentucky Transportation Center (KTC), and the financial support from KTC is greatly appreciated. Their generous support enabled me to pursue my Ph.D. degree as the sole professional focus during my graduate study as a research assistant.

I would like to acknowledge my parents Baofu Zhang and Hengxia Wang, my parents in law Jiaqiang Liu and Mingxiu Zhao, and my sister LiLi Zhang. It is their guidance,

encouragement, inspiration, and love that have made me overcome challenges and complete this work.

Finally, I would like to dedicate this work to my wife Li Liu and our coming baby who will see the world in July. She often came to the United States to accompany with me and do a lot for me by sacrificing her job and hobbies. She silently endured all the difficult times when I did not stay with her. Her companionship, encouragement, and support have been made me to strive for the best in our lives.

Table of Contents

A	CKNC	OWLEDGEMENTS	iii
L	IST OI	TABLES	viii
L	IST OI	FFIGURES	xiii
1	INT	RODUCTION	1
	1.1	Background and Motivation	1
	1.2	Definition of the "Bump" and Rating	5
	1.3	Dissertation Objectives and Tasks	8
	1.4	Research Structure	. 10
	1.5	Dissertation Significance	. 11
2	LIT	ERATURE REVIEW	. 14
	2.1	Causes of Bridge Approach Settlement	. 14
	2.2	Mitigation Methods	. 18
	2.3	Application of Approach Slabs	. 20
	2.4	Critical Review of Previous Studies	. 28
3	DA	TA COLLECTION	. 29
	3.1	Model Inputs Identification	. 29
	3.2	Other Lurking Variables	. 36
	3.3	Collection Method	. 39
	3.4	Model Output	. 40
	3.5	Rating Output Levels	. 42
	3.6	Bridge Selection	. 45
	3.6.	1 Information from a Survey	. 45
	3.6.	2 Information from the Transportation Cabinet	. 46
	3.7	Limitations of Data	. 47
4	DA	TA ANALYSES	. 51
	4.1	Approach Age	. 52
	4.1.	1 Sample One	. 52
	4.1.	2 Sample Two	. 62
	4.1.	3 Conclusions	. 67
	4.2	Bridge Length and Width	. 68

4.2	2.1	Sample One	68
4.2	2.2	Sample Two	77
4.2	2.3	Conclusions	84
4.3	Ave	erage Daily Traffic	85
4.3	3.1	Sample One	85
4.3	3.2	Sample Two	89
4.3	3.3	Conclusions	93
4.4	App	proach Type	94
4.4	4.1	Sample One	94
4.4	1.2	Sample Two	98
4.4	1.3	Conclusions	106
4.5	Abı	ıtment Type	107
4.5	5.1	Sample One	107
4.5	5.2	Sample Two	110
4.5	5.3	Conclusions	113
4.6	Em	bankment Height	114
4.6	5.1	Sample One	114
4.6	5.2	Sample Two	117
4.6	5.3	Conclusions	120
4.7	For	indation Soil Depth	121
4.7	7.1	Sample One	121
4.7	7.2	Sample Two	124
4.7	7.3	Conclusions	127
4.8	For	Indation Soil Consistency	127
4.8	3.1	Sample One	127
4.8	3.2	Sample Two	131
4.8	3.3	Conclusions	134
4.9	Geo	ographical Location	134
4.10	Cor	nprehensive Model	141
4.1	10.1	Sample One	145
4.1	10.2	Sample Two	157
4.1	10.3	Comparison between Two Models	168

	4.10	0.4 Conclusions	170
5	DIS	TIRCT INTERVIEWS	172
	5.1	Foundation Soil	173
	5.2	Embankment Backfill Material	176
	5.3	Approach Slab	184
	5.4	Abutments	186
	5.5	Drainage	189
6	CO	NCLUSIONS AND RECOMMENDATIONS	196
	6.1	Summary	196
	6.2	Conclusions	198
	6.3	Recommendations for Future Research	202
A	PPENI	DICES	204
	Apper	ndix A: Summary of Major Studies on Bridge Approach Settlement	204
		ndix B: Survey of Requesting Bridges with Different Settlement Levels for rising Sample One	225
	Apper	ndix C: Detailed Data Information of Sample One	228
	Apper	ndix D: Detailed Data Information of Sample Two	234
	Apper	ndix E: Output of the Ordinal Logistic Regression for Sample One	275
	Apper	ndix F: Output of the Multinomial Logistic Regression for Sample One	279
	Apper	ndix G: Output of the Ordinal Logistic Regression for Sample Two	284
	Apper	ndix H: Output of the Multinomial Logistic Regression for Sample Two	288
В	IBLIO	GRAPHY	293
	T .		200

List of Tables

Table 1.1 Is Approach slab settlement a significant problem? (Virginia DOT, 1999) 4
Table 1.2 Bump Scale Ratings (Hun Soo Ha, 2002)
Table 1.3 Approach slab rating system developed by LTRC (Das et al. 1999) 8
Table 2.1 Summary of causes of bridge approach settlement (Helwany, 2007)
Table 2.2 Mitigation methods of bridge approach settlement (Helwany, 2007)
Table 2.3 Current use of approach slabs (%) state interstate system, primary system, and
secondary system (Hoppe, 1999)
Table 2.4 Advantage of Using Approach Slabs (Hoppe, 1999)
Table 2.5 Disadvantage of using approach slabs (Hoppe, 1999)
Table 3.1 Connection between approach slab and bridge (Hoppe, 1999)
Table 3.2 Micro methods in determining differential settlement scale
Table 3.3 Macro method in determining differential settlement scale
Table 3.4 Distribution of the bridges with different settlement levels from each
transportation district for sample one
Table 3.5 Distribution of the bridges with different settlement levels from each
transportation district for sample two
Table 4.1 Code sheet for the variables in samples
Table 4.2 Sample One: Frequency table of age group (AGEG) by SEVERITY55
Table 4.3 Sample One: Model fitting information of ordinal logistic regression between
AGE and SEVERITY57
Table 4.4 Sample One: Parameter estimates of ordinal logistic regression between AGE
and SEVERITY
Table 4.5 Sample One: Test of parallel lines of ordinal logistic regression between AGE
and SEVERITY60
Table 4.6 Sample Two: Frequency table of age group (AGEG) by SEVERITY 64
Table 4.7 Sample Two: Model fitting information of ordinal logistic regression between
AGE and SEVERITY66
Table 4.8 Sample Two: Parameter estimates of ordinal logistic regression between AGE
and SEVERITY66
Table 4.9 Sample Two: Test of parallel lines of ordinal logistic regression between AGE
and SEVERITY67
Table 4.10 Sample One: Frequency table of length group (LENGTHG) by SEVERITY 69
Table 4.11 Sample One: Frequency table of width group (WIDTHG) by SEVERITY 72
Table 4.12 Sample One: Model fitting information of ordinal logistic regression between
LENGTH and SEVERITY
Table 4.13 Sample One: Parameter estimates of ordinal logistic regression between
Length and SEVERITY
Table 4.14 Sample One: Test of parallel lines of ordinal logistic regression between
LENGTH and SEVERITY75
Table 4.15 Sample One: Model fitting information of ordinal logistic regression between
WIDTH and SEVERITY

Table 4.16 Sample One: Parameter estimates of ordinal logistic regression between
WIDTH and SEVERITY76
Table 4.17 Sample One: Test of parallel lines of ordinal logistic regression between
WIDTH and SEVERITY77
Table 4.18 Sample Two: Frequency table of length group (LENGTHG) by SEVERITY78
Table 4.19 Sample Two: Frequency table of width group (WIDTHG) by SEVERITY 78
Table 4.20 Sample Two: Model fitting information of ordinal logistic regression between
LENGTH and SEVERITY81
Table 4.21 Sample Two: Parameter estimates of ordinal logistic regression between
LENGTH and SEVERITY 82
Table 4.22 Sample Two: Test of parallel lines of ordinal logistic regression between
LENGTH and SEVERITY82
Table 4.23 Sample Two: Model fitting information of ordinal logistic regression between
WIDTH and SEVERITY83
Table 4.24 Sample Two: Parameter estimates of ordinal logistic regression between
WIDTH and SEVERITY 83
Table 4.25 Sample Two: Test of parallel lines of ordinal logistic regression between
WIDTH and SEVERITY 84
Table 4.26 Sample One: Model fitting information of ordinal logistic regression between
ADT and SEVERITY85
Table 4.27 Sample One: Parameter estimates of ordinal logistic regression between ADT
and SEVERITY86
Table 4.28 Sample One: Test of parallel lines of ordinal logistic regression between ADT
and SEVERITY86
Table 4.29 Sample One: Model fitting information of multinomial logistic regression
between ADT and SEVERITY87
Table 4.30 Sample One: Parameter estimates of multinomial logistic regression between
ADT and SEVERITY 87
Table 4.31 Sample Two: Model fitting information of ordinal logistic regression between
ADT and SEVERITY90
Table 4.32 Sample Two: Parameter estimates of ordinal logistic regression between ADT
and SEVERITY90
Table 4.33 Sample Two: Test of parallel lines of ordinal logistic regression between ADT
and SEVERITY91
Table 4.34 Sample Two: Model fitting information of multinomial logistic regression
between ADT and SEVERITY91
Table 4.35 Sample Two: Parameter estimates of multinomial logistic regression between
ADT and SEVERITY92
Table 4.36 Sample Two: Classification table of multinomial logistic regression between
ADT and SEVERITY92
Table 4.37 Sample One: Frequency table of approach type (APPT) by SEVERITY 95
Table 4.38 Sample One: Model fitting information of ordinal logistic regression between
ADDT and SEVEDITY 06

Table 4.39 Sample One: Parameter estimates of ordinal logistic regression between APPT
and SEVERITY
Table 4.40 Sample One: Test of parallel lines of ordinal logistic regression between
APPT and SEVERITY 97
Table 4.41 Sample Two: Frequency table of approach type (APPT) by SEVERITY 98
Table 4.42 Sample Two: Model fitting information of ordinal logistic regression between
APPT and SEVERITY
Table 4.43 Sample Two: Parameter estimates of ordinal logistic regression between
APPT and SEVERITY
Table 4.44 Sample Two: Test of parallel lines of ordinal logistic regression between
APPT and SEVERITY
Table 4.45 Sample Two: APPT VS. SEVERITY cross tabulation
Table 4.46 Sample Two: Chi-square test for APPT VS. SEVERITY 104
Table 4.47 Sample Two: Rating system to quantify approach effectiveness
Table 4.48 Sample Two: Grade distribution for approach type in different settlement
severity
Table 4.49 Sample One: Frequency table of abutment type (ABUT) by SEVERITY 107
Table 4.50 Sample One: Model fitting information of ordinal logistic regression between
ABUT and SEVERITY
Table 4.51 Sample One: Parameter estimates of ordinal logistic regression between
ABUT and SEVERITY
Table 4.52 Sample One: Test of parallel lines of ordinal logistic regression between
ABUT and SEVERITY
Table 4.53 Sample Two: Frequency table of abutment type (ABUT) by SEVERITY . 110
Table 4.54 Sample Two: Model fitting information of ordinal logistic regression between
ABUT and SEVERITY
Table 4.55 Sample Two: Parameter estimates of ordinal logistic regression between
ABUT and SEVERITY
Table 4.56 Sample Two: Test of parallel lines of ordinal logistic regression between
ABUT and SEVERITY
Table 4.57 Sample One: Frequency table of embankment height group (EHG) by
SEVERITY
Table 4.58 Sample One: Model fitting information of ordinal logistic regression between
EH and SEVERITY
Table 4.59 Sample One: Parameter estimates of ordinal logistic regression between EH
and SEVERITY
Table 4.60 Sample One: Test of parallel lines of ordinal logistic regression between EH
and SEVERITY
Table 4.61 Sample Two: Frequency table of embankment height group (EHG) by
SEVERITY
Table 4.62 Sample Two: Model fitting information of ordinal logistic regression between
EU and SEVEDITY 110

Table 4.63 Sample Two: Parameter estimates of ordinal logistic regression between EH
and SEVERITY
Table 4.64 Sample Two: Test of parallel lines of ordinal logistic regression between EH
and SEVERITY
Table 4.65 Sample One: Frequency table of foundation soil depth (FSD) by SEVERITY
122
Table 4.66 Sample One: Model fitting information of ordinal logistic regression between
FSD and SEVERITY 123
Table 4.67 Sample One: Parameter estimates of ordinal logistic regression between FSD
and SEVERITY
Table 4.68 Sample One: Test of parallel lines of ordinal logistic regression between FSD
and SEVERITY 124
Table 4.69 Sample Two: Frequency table of foundation soil depth (FSD) by SEVERITY
Table 4.70 Sample True Model fitting information of ordinal logistic recognisis hoterage
Table 4.70 Sample Two: Model fitting information of ordinal logistic regression between
FSD and SEVERITY 126
Table 4.71 Sample Two: Parameter estimates of ordinal logistic regression between FSD and SEVERITY
Table 4.72 Sample Two: Test of parallel lines of ordinal logistic regression between FSD
and SEVERITY
Table 4.73 Sample One: Frequency table of foundation soil consistency (FSC) by
SEVERITY
Table 4.74 Sample One: Model fitting information of ordinal logistic regression between
FSC and SEVERITY
Table 4.75 Sample One: Parameter estimates of ordinal logistic regression between FSC
and SEVERITY
Table 4.76 Sample One: Test of parallel lines of ordinal logistic regression between FSC
and SEVERITY
Table 4.77 Sample Two: Frequency table of foundation soil consistency (FSC) by
SEVERITY
Table 4.78 Sample Two: Model fitting information of ordinal logistic regression between
FSC and SEVERITY
Table 4.79 Sample Two: Parameter estimates of ordinal logistic regression between FSC
and SEVERITY
Table 4.80 Sample Two: Test of parallel lines of ordinal logistic regression between FSC
and SEVERITY
Table 4.81 Distribution of the Bridge Approaches from Each District
Table 4.82 Sample One: Test of parallel lines of ordinal logistic regression between
DISTRICT and SEVERITY
Table 4.83 Sample One: Model fitting information of multinomial logistic regression
between district and SEVERITY
Table 4.84 Sample One: Parameter estimates of multinomial logistic regression between
DISTRICT and SEVERITY 138

Table 4.85 Sample One: Parameter estimates of multinomial logistic regression between
DISTRICT and SEVERITY
Table 4.86 Sample Two: Model fitting information of ordinal logistic regression between
DISTRICT and SEVERITY
Table 4.87 Sample Two: Parameter estimates of ordinal logistic regression between
DISTRICT and SEVERITY
Table 4.88 Sample Two: Test of parallel lines of ordinal logistic regression between
DISTRICT and SEVERITY
Table 4.89 Classification of the variables in the model
Table 4.90 Dummy variables definition in the model
Table 4.91 Sample One: Model fitting information of ordinal logistic regression 147
Table 4.92 Sample One: Goodness of fit of ordinal logistic regression
Table 4.93 Sample One: Pseudo R-square of ordinal logistic regression
Table 4.94 Sample One: Test of parallel lines of ordinal logistic regression
Table 4.95 Sample One: Model fitting information of multinomial logistic regression 151
Table 4.96 Sample One: Goodness of fit of ordinal logistic regression
Table 4.97 Sample One: Pseudo R-square of multinomial logistic regression
Table 4.98 Sample One: Likelihood ration tests of multinomial logistic regression 152
Table 4.99 Sample One: Classification table of multinomial logistic regression 153
Table 4.100 Sample Two: Model fitting information of multinomial logistic regression
Table 4.101 Sample Two: Goodness of fit of multinomial logistic regression
Table 4.102 Sample Two:: Pseudo R-square of multinomial logistic regression 160
Table 4.103 Sample Two: Likelihood ratio tests of multinomial logistic regression 161
Table 4.104 Sample Two: Classification table of multinomial logistic regression 161
Table 4.105 Percent correct of applying two model to each other dataset
Table 5.1 Summary of foundation soils improvement methods based on soil type 174
Table 5.2 Summary of foundation soils improvement methods based on soil type based
on the function (Puppala, 2009)
Table 5.3 Embankment material specifications (Hoppe, 1999)
Table 5.4 Lift thickness and percent compaction requirements (Hoppe, 1999) 179
Table 5.5 Material requirements for flowable fill by Colorado DOT
Table 5.6 Drainage method used by various states (White et al., 2005)

List of Figures

Figure 1.1 The significance of bridge approach settlement (Virginia DOT, 2003) 3
Figure 2.1 Schematic of various contributors leading to the existence of the bump at the
bridge ends (Briaud et al. 1997)
Figure 2.2 Schematic design of a typical approach slab (TxDOT, 2002)
Figure 3.1 A typical full height closed or high abutment (bridge No. 094B00041N) 31
Figure 3.2 A typical perched abutment (bridge No. 056B00454R)
Figure 3.3 A typical spill-through abutment (bridge No. 056B00489N)
Figure 4.1 Sample One: Scatterplot of approach settlement levels by approach age 53
Figure 4.2 Sample One: Plot of the percentage of approaches with minimal SEVERITY
in each age group55
Figure 4.3 Sample One: Plot of the percentage of approaches with severe SEVERITY in
each age group56
Figure 4.4 Sample Two: Scatterplot of approach settlement levels by approach age 63
Figure 4.5 Sample One: Plot of the percentage of approaches with minimal SEVERITY
in each age group
Figure 4.6 Sample Two: Plot of the percentage of approaches with severe SEVERITY in
each age group65
Figure 4.7 Sample One: Scatterplot of approach settlement levels by bridge length 70
Figure 4.8 Sample One: Scatterplot of approach settlement levels by bridge width 70
Figure 4.9 Sample One: Plot of the percentage of approaches with minimal SEVERITY
in each length group71
Figure 4.10 Sample One: Plot of the percentage of approaches with severe SEVERITY in
each length group71
Figure 4.11 Sample One: Plot of the percentage of approaches with minimal SEVERITY
in each width group
Figure 4.12 Sample One: Plot of the percentage of approaches with severe SEVERITY in
each width group
Figure 4.13 Sample Two: Plot of the percentage of approaches with minimal SEVERITY
in each length group
Figure 4.14 Sample Two: Plot of the percentage of approaches with severe SEVERITY in
each length group
Figure 4.15 Sample Two: Plot of the percentage of approaches with minimal SEVERITY
in each width group
Figure 4.16 Sample Two: Plot of the percentage of approaches with severe SEVERITY in
each width group
Figure 4.17 Sample One: Distribution of settlement levels across approach type 96
Figure 4.18 Sample Two: Distribution of settlement levels across approach type 99
Figure 4.19 Sample One: Distribution of settlement levels across abutment type 108
Figure 4.20 Sample Two: Distribution of settlement levels across abutment type 111
Figure 4.21 Sample One: Scatterplot of approach settlement levels by embankment height
115

Figure 4.22 Sample Two: Scatterplot of approach settlement levels by embankment
height
Figure 4.23 Sample One: Scatterplot of approach settlement levels by foundation soil
depth
Figure 4.24 Sample Two: Scatterplot of approach settlement levels by foundation soil depth
Figure 4.25 Sample One: Distribution of settlement levels across foundation soil
consistency 129
Figure 4.26 Sample Two: Distribution of settlement levels across foundation soil
consistency 132
Figure 4.27 Sample One: Distribution of settlement levels across transportation district
Figure 4.28 Sample Two: Distribution of settlement levels across transportation district
Figure 4.29 Sample One: Variation trend of the estimated probability of minimal versus
approach age
Figure 4.30 Sample One: Variation trend of the estimated probability of minimal versus
transportation districts
Figure 4.31 Sample One: Variation trend of the estimated probability of minimal versus
foundation soil depth
Figure 4.32 Sample Two: Variation trend of the estimated probability of minimal versus
transportation districts
Figure 4.33 Sample Two: Variation trend of the estimated probability of minimal versus
approach age
Figure 4.34 Sample Two: Variation trend of the estimated probability of minimal versus
average daily traffic
Figure 4.35 Sample Two: Variation trend of the estimated probability of minimal versus
average approach type
Figure 5.1 The flowable mortar used under a roadway pavement (Smadi, 2001) 183
Figure 5.2 Simplified cross section of non-integral abutment bridge (Greimann et al.,
1987; White et al., 2005)
Figure 5.3 Simplified cross section of integral abutment bridge (Greimann et al., 1987;
White et al., 2005)
Figure 5.4 Approach slab joint details at pavement edge (Briaud et al., 1997)
Figure 5.5 Mechanically stabilized earth (MSE) walls system under sleeper slab (Abu-
Hejleh et al., 2006)
Figure 5.6 Drainage layer of granular material and collector pipe (Nassif, 2002) 192
Figure 5.7 Schematic of porous fill surrounding subdrain (Iowa DOT, 2005)
Figure 5.8 Schematic of granular backfill wrapped with geotextile filter material
(Wisconsin DOT, 2003)
Figure 5.9 Schematic of geocomposite vertical drain wrapped with filter fabric (Missouri
DOT 2005)

1 INTRODUCTION

1.1 Background and Motivation

The differential settlement (also referred to approach settlement) between the bridge abutment and the adjacent roadway pavement usually creates a bump in the roadway. This differential settlement is commonly defined as "the difference in elevation of approach pavements and bridge upper-structures caused by unequal settlement of embankments and abutments." (Sam Helwany et al., 2007). Settlement of the approach is an old and well recognized problem across most of the state transportation agencies. The Kentucky Transportation Cabinet (KYTC) has also identified bridge settlement and the formation of the bump as a significant problem due to its noticeable consequences. This heave/uneven transition may cause the following results:

- a) discomfort to passengers,
- b) damage to vehicles,
- c) a negative effect on public perception of the state infrastructure,
- d) damage to bridge structures,
- e) reduced steering control for drivers,
- f) increased traffic loading on the abutment,
- g) accidents,
- h) considerable maintenance costs/works, and
- i) delays and inconveniences caused by maintenance work.

In addition, the constant maintenance work, closure of lanes, traffic control resulted by bump problems would adversely interrupt the orderly flow of traffic and cause delay; or in some cases the maintenance works in heavy traffic roads are practically impossible without bringing traffic into a standstill. According to the report of Federal Highway Administration (FHWA) "Priority, Market-Ready Technologies and Innovations" (FHWA-HRT-04-053), the delay hours caused by traffic congestion due to road repair works average approximately 36 hours for each person per year. In other words, all kinds of repair work results in annually 5.7 billion of person-hours of delay. Maintenance work of bridge bumps takes up an important part of the whole amount of repair works for transportation agencies, and hence bump problems have gained more attention especially in this era where time is becoming more and more valuable to everybody.

Considerable amounts of annual maintenance cost to reduce differential settlement and bump problems consume a significant amount of budgets of state departments of transportation in the United States. National Cooperative Highway Research Program (NCHRP) synthesis 234 (Briaud et al., 1997) reported that 25 percent of the bridges nationwide, approximately 150,000 bridges, showed damage induced by differential bridge approach settlement and more than \$100 million is spent on maintenance or repair every year. A survey (Laguros et al., 1990) of 61 different transportation agencies concluded that almost 70% of the agencies considered bridge approach settlement or bump problems significant. Furthermore, a more detailed survey (Hoppe, 1999) reported that bridge approach settlement or bump problems were rated as a significant problem by 44% of the state Department of Transportation agencies (Figure 1.1). Kentucky is listed as having a "Yes" problem. Furthermore, interviews with the local bridge engineers also

conclude that the bridge approach settlement is extensive in Kentucky. Statistics gathered from KTC (Dupont and Allen, 2002) reported that nearly \$1000 is spent per bridge per year to address approach settlement problems, slightly higher than the national average cost of \$700 per bridge per year (Briaud et al., 1997).

Figure 1.1 The significance of bridge approach settlement (Virginia DOT, 2003)

A survey concerning the validity of using approach slab as one of the most effective measures for eliminating differential settlement at bridge ends was also conducted by Virginia DOT in 1999. The results as showed in Table 1.1 indicate that almost half states still consider the approach slab settlement as a significant problem.

Table 1.1 Is Approach slab settlement a significant problem? (Virginia DOT, 1999)

State	Yes	No	Moderate
AZ		X	
CA	X		
CT			X
DE	X		
FL			X
GA	X		
ID	X		
IN			X
IA			X
IL	X		
KS	X		
KY	X		
LA	X		
MA			X
MD			X
ME		X	
MI			X
MN	X		
MS	X		
MO	X		
MT	X		
ND	X		
NE	X		
NH		X	
NJ			X
NM	X		
NY			X
ОН			X
OK	X		
OR	X		
SC	X		
SD	X		

TX		X	
VT		X	
VA			X
WA	X		
WI	X		
WY		X	

Because of the serious consequences caused by differential settlement, numerous studies have been funded to identify the mechanism of the formation of approach settlement, determine the mitigation methods, and seek advanced maintenance techniques to lessen maintenance budget. In an effort to reduce the effects of differential settlement, the present research is primarily aimed at developing a model that can predict settlement and determine remediation plans during project development based on given project characteristics. With this core objective in mind, one of the tasks of this research is to synthesize the causation of differential bridge end settlement and bump problems in Kentucky and then identify best practices to prevent differential settlement.

1.2 Definition of the "Bump" and Rating

Differential settlement originates from the fact that the bridge transition connects two structures with different supporting systems. A bridge abutment is usually constructed on relatively firm soil, rock, or piles driven to a dense or stiff deep soil stratum and generates slight settlement, which is negligible compared to the settlement of roadway pavement that is commonly supported on a natural or filled soil subgrade.

The "bump" typically can be defined as the differential settlement at the area between the bridge and roadway interfaces (Anand J., 2009). Differential settlement is an occurrence

ordinarily discovered where two foundations of two cooperating structures have been constructed under different concepts. For roadways, this occurrence can be found at the intersection between the roadway and the bridge, which is normally indicated as approach pavement/slab in the most cases. White et al. (2005) defined the term "bridge approach" as a larger area covering from the bridge structure/abutment to a distance of about 100 ft. away from the abutment. This definition refers to not only the approach slab alone but also the backfill and embankment areas beyond and under the approach slab as significant factors that contribute to the settlement around the bridge approach region.

Many researchers have studied the interface between bridge and roadway. Four methods have been summarized to define the approach settlement tolerance.

a) Bump could be noticed with about 0.5 inches of approach settlement (Wahls, 1990), and may cause riding discomfort at about 2 to 2.5 inches (Stark et al. 1995). Walkinshaw (1978) suggested the differential settlement greater than 2.5 inches can result in a poor ride quality and maintenance is needed. Bozozuk (1978) concluded that differential settlement could be tolerated to 3.9 inches vertically and 2 inches horizontally. Hun Soo Ha et al (2002) suggested a range to rate the bump scale.

Table 1.2 Bump Scale Ratings (Hun Soo Ha, 2002)

Rating	Description	Range
0	No Bump	0
1	Slight Bump	~1 inch
2	Moderate Bump—Readily Recognizable	~2 inch
3	Significant Bump—Repair Needed	~3 inch
4	Large Bump—Safety Hazard	>3 inch

- b) Long et al. (1988) and Wahls (1990) recommended the use of a relative gradient, which is defined as a function of the length of the approach slab, of 1/125 as a criterion to begin a remedial action, and a gradient smaller than 1/200 may be considered as a satisfactory level for rider comfort. According to these thresholds, the required design length of an approach pavement/slab (L) can be estimated as: L >= 200(sf sa), Where sf is the estimated total fill settlement at the end the approach pavement/slab, and sa is the estimated settlement of the bridge abutment.
- c) Several researchers used the International Roughness Index (IRI), which is defined as the accumulations of undulations under a given segment length and normally in the form of mm/m or m/km, to determine the allowable bumps. The highest IRI value would be used to rate the performance of an approach, and rating system of bridge approaches using IRI was developed by Louisiana Transportation and Research Center (LTRC) (Das et al. 1999).

Table 1.3 Approach slab rating system developed by LTRC (Das et al. 1999)

Range (IRI)	Dating
m/km	Rating
0 to 3.9	Very Good
4.0 to 7.9	Good
8.0 to 9.9	Fair
10.0 to 11.9	Poor
12 and above	Very Poor

d) In Australia, Hsi (2007) recommended differential settlement of 0.3 percent, grade change in transverse and longitudinal direction, and a residual settlement of 100 mm for a 40-year period as threshold to initiate maintenance procedures on transition zones.

1.3 Dissertation Objectives and Tasks

The Kentucky Transportation Cabinet (KYTC), and many other state transportation agencies, continually struggle with differential settlement at bridge ends. Bump issues present a potential hazard at bridge ends for motorists, particularly motorcyclists.

Additionally, bump issues are a constant source of maintenance spending, averagely \$1,000 per bridge per year in the commonwealth of Kentucky (Dupont and Allen, 2002). Many have deemed that it is a problem that is going to exist without resolution from some configurations of approach slabs, flooded backfills, or any other methods. This research does not study bump issues from the angle of developing engineering techniques that may minimize or eliminate the differential settlement at bridge ends. In contrast, this

study aims to identify the best practice of minimizing or eliminating bump issues by analyzing other states' experience regrading this issue and attempts to yield a model for estimating the severity of the phenomenon given specific project conditions based on nearly 50 years of highway and bridge construction in Kentucky. In this way, the transportation agency can be prepared to monitor and better repair the situation when it occurs.

The main objective of this research project is to develop a settlement predictive model at a macro level for estimating the severity of differential settlement at bridge ends.

Therefore, it is significant to identify major project characteristics that have an important impact on the formation of the approach settlement, and determine which characteristics could be qualitative or quantitative defined and regarded as inputs to build the model.

This methodology intends to provide project stakeholders with an overall understanding of monitoring and better repairing the differential settlement at bridge ends when it occur. With this view in mind, the objectives of the study can be outlined as follows:

- a) Collect a body of design, construction and maintenance data that describes a
 relevant section of bridges and approaching roadways within Kentucky and the
 bridge end settlement that has occurred at these bridges,
- b) Identify recent developments in research associated with bridge ends, particularly those completed since the last study conducted by KTC,
- c) Analyze the collected macro data and conduct field interviews with each district to identify a subset of bridges and develop a predictive model for bridge end settlement during project planning and design.

1.4 Research Structure

This research can be accomplished through the following tasks:

- a) Review literature and publically available data in differential bridge end settlement and prediction. An extensive literature review related to causation of differential bridge end settlement should be completed in this phase. The review includes publically available resources for existing structures exhibiting differential bridge end settlement (geotechnical reports, project plans, United States Geological Survey, etc.), especially review literature related to prediction of differential bridge end settlement.
- b) Survey selected bridge approaches and qualitatively assess causative factors. An online survey form has been created by "Surveygizmo" to contact district engineers in the 12 districts to identify bridges within their districts that experience excessive approach settlement, moderate approach settlement, and minimal approach settlement, respectively. Project characteristics and geotechnical conditions of these bridges are also requested. Approximately 35 district bridge engineers responded to this survey, as well as more than 130 bridges with different approach settlement levels were collected. These bridges will be verified and used as the first sample to conduct regression analysis in the following tasks. Next, field interviews with each district representatives would be scheduled to verify the results of the survey and acquire an understanding of the whole picture of bump issues at each district.

Advice on how to select bridges is expected, as well as advice on which bridges can be used as sample to conduct regression analysis.

- c) Develop a multivariate regression model for prediction of approach settlement.
- d) Collect the best practices in the treatment of bridge approach settlement. This phase will review literature on best practices for corrective methods in treating differential bridge end settlement. Then collect KYTC practices used as corrective actions for treating the field interview with local district bridge engineers. Lastly, based on previous studies, collect KYTC methods to determine the timing for corrective measures.
- e) Develop a framework for application of settlement treatments to align with predicted settlement conditions. Based on the differential settlement prediction model, the future or past bump problems could be predicted into three levels-severe, moderate, and minimal given a specific bridge. Then, compare this predicted level with the real bump conditions obtained by field interview to verify the validity of this model. If the correlation coefficient of this model is good, it can be used to develop a framework for prescriptive correction measures that could be applied to predicted differential settlement. In addition, procedures and implementation measures for using the framework also should be given.

1.5 Dissertation Significance

This research expects to obtain a comprehensive picture of current bump problems in Kentucky. Identify design, construction, and maintenance practices to eliminate or minimize the differential settlement at bridge ends according to previous study review,

survey, and field interview with local bridge engineers in each district. Different variables that contribute to the formation of approach settlement would be identified and defined. Some bridges that have been experiencing different settlement levels would be asked from local bridge personnel according to a survey, which would generate the first sample with small quantity of bridges. Then the second sample with 600 bridges would be created by randomly selecting bridges from the inspective datum of Kentucky to conduct logistic statistical analysis to develop models for predicting the settlement status.

Availability and reliability of these two models would be compared and verified. Next, develop an implementation resource to use as a model to predict bridge end settlement given project conditions and provide a framework for application of settlement treatments to align with predicted settlement conditions.

Numerous studies have been done on the topic of bridge bump issues; some of them were based on the theme of statistics. However, few researchers conducted the analysis according to systematic statistical method. Laguros and Zaman (1990) have established a linear numeric model to explain the relationships between the approach settlement and various causative factors by quantitatively defining these factors, but none of the categorical causing factors were included in this model. Most of previous studies on bump issues focused on only one contributing factor or some and did not study this issue account for all causative factors; or specific techniques for eliminating or minimizing the effects at specific locations/bridges; or conclusions were not based upon an in-depth statistical approach. This study focuses on the issue at a macro level and will develop a settlement predictive model by considering important factors based on historic data from a wide range of Kentucky roads and bridges. This work hopes to offer contributions to

researchers, engineers, and policy makers. Researchers and engineers will benefit from developing a rich understanding on the mechanism of formation of approach settlement and effective mitigation methods under different circumstances. In addition, this work will offer policy makers insight into effectively initiating guidelines on bridge design, construction, and maintenance work in order to minimize or eliminate approach settlement at bridge ends.

2 LITERATURE REVIEW

In order to appreciate the causes of the failures occurring at bridge ends and to determine the best practices for solving bump problems, a good understanding of the mechanics of approach is warranted. A comprehensive literature review related to the causation of differential bridge ends settlement has been conducted, and general corrective actions for minimizing/eliminating this problem have been summarized. This section is aiming at providing a reference when a specific problem has emerged given Kentucky construction policies and project characteristics

2.1 Causes of Bridge Approach Settlement

Many studies (Hopkins, 1969, 1985; Stewart, 1985; Greimann et al., 1987; Laguros et al., 1990; Kramer and Sajer, 1991; Ha et al., 2002; Jayawickrama et al., 2005; White et al., 2005, 2007, Puppala, 2009; AKM, A. I., 2010) have been undertaken to determine causes of the problem. A commonly accepted study conducted by Briaud et al. (1997) summarized various factors that contribute to differential settlement at bridge ends.

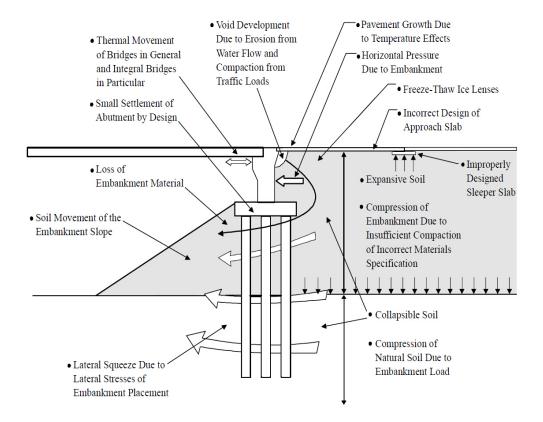


Figure 2.1 Schematic of various contributors leading to the existence of the bump at the bridge ends (Briaud et al. 1997)

Helwany (2007) classified different factors into five major categories. A summary of these factors is listed in Table 2.1.

Table 2.1 Summary of causes of bridge approach settlement (Helwany, 2007)

	Category	Causes
1	Poor Performance of Approach Pavement	Deformation in Flexible Pavement: Rutting, shoving or cracking
		Failures in Concrete Pavements: transverse cracking, joint faulting, corner breaks, or blowup Improper placement of roadway grades

		Lack of maintenance of expansion joints of Non-
		Integral Abutments causing temperature induced
		stresses on bridge abutment
	True of Duides	
	Type of Bridge	Ratcheting or cyclic movement of integral
2	Abutments and	abutments resulting in lateral movement of
	Foundation Support	abutment and increased lateral earth pressures
		Vertical movement of foundations (shallow vs.
		deep) in relationship to embankment stiffness
		Improper Abutment or Wingwall Design
		Inadequate compaction of backfill due to limited
		space, improper construction equipment, contractor
		care, soil type, and/or lift thickness
		Volumetric changes of backfill due to temperature
	Vertical and Lateral	differences and drainage (i.e., frost heaving, thaw,
3	Deformation of	collapsible soils, and swelling)
	Backfill	Post-construction consolidation of cohesive soils
		due to the embankment self-weight, traffic loads,
		and weight of asphalt overlays
		Bearing capacity failure of sleeper slab footing
		under approach slabs
		Lateral squeeze of weak foundation soils due to
		increase vertical stresses (i.e., embankment weight)
	Vertical and Lateral	Consolidation settlement (primary & secondary) of
4	Deformation of	silt, clay and organic soils due to increased
	Foundation Soil	effective stress
		Slope stability failures due to soils with low shear
		strengths
		suchguis

		Erosion of side slopes at abutment causing
	localized movements of backfill behind and in	
		front of abutment. Also, loss of fines through the
		granular construction layer/pad below the abutment
		(usually constructed to facilitate construction
		operations) and the subsequent movement due to
_	5 Poor Drainage	fines migration
3		Instability of slopes at the abutment from rise in
		water level
		Increase in hydrostatic pressure behind abutment
		Poor pavement drainage causing ice lensing, soft
		subgrades, and
		pumping that causes faulting in concrete
		pavements and cracking in flexible pavements

Puppala (2009) presented the following major factors that caused approach bumps by summarizing and reviewing of other investigations that addressed the bump problems:

- Consolidation settlement of foundation soil;
- Poor compaction and consolidation of backfill material;
- Poor drainage and soil erosion;
- Types of bridge abutments;
- Traffic volume;
- Age of the approach slab;
- Approach slab design;
- Skewness of the bridge; and

• Seasonal temperature variations.

Although it is easy to spot excessive settlement at bridge approaches, their causes are usually complex and difficult to figure out. Some studies attempted to solve this problem by addressing one or several causes. In general, approach settlement is a result of a combination of several factors that may vary from case to case. Very seldom can approach settlement be traced to a single cause.

2.2 Mitigation Methods

In order to control or prevent problems induced by differential settlement, numerous mitigation methods have been considered. Most studies give similar recommendations for reducing or removing the effects of approach settlement. In general, mitigation methods can be classified into three major categories of improvements that correspond to the major contributing factors at bridge ends:

- a) enhancement of the foundation soil;
- b) improvement of the embankment fill; and
- c) erosion reduction.

Helwany (2007) summarized mitigation methods that have been used in an attempt to alleviate various factors that may cause approach settlement. One or more of mitigation techniques may be required because of different site conditions.

Table 2.2 Mitigation methods of bridge approach settlement (Helwany, 2007)

Causes	Mitigation Method			
	Removal and Replacement of Weak Foundation			
Enhancement of the	Soils			
foundation soil	Ground Improvement (mechanical or chemical)			
Touridation son	Surcharging			
	Supporting Embankment on Deep Foundations			
	More Stringent Backfill and Compaction			
	Specification			
	Scheduling a Delay in Construction Work			
Improvement of the	Geosynthetic Reinforced Earth			
embankment fill	Controlled Low Strength Materials (CLSM)			
	Lightweight Fills			
	Reinforced Concrete Approach Slab			
	Hydraulic Fills			
	Flatter Side Slopes			
	Limiting P200 material			
	Diverting Water away from the Abutment			
	Geotextile Separators			
Erosion reduction	Backfill and Surface Drains			
	Increasing Surface Drainage			
	Maintaining Watertight Joints			
	Extending Wingwalls			
	Extending Limits of Backfill Prism			

Although approach settlement has been commonly recognized, given plenty of attention, and its causes have been clearly identified in the past several decades, no unified set of engineering solutions has been proposed primarily due to the complexity of the factors

involved and varied situations case by case. Most previous research examined the bump issues at a micro level and presented new engineering techniques for minimizing or eliminating the effects at specific locations. However, the proposed research focuses the problem at a macro level and aims at providing guidelines to stakeholders for a specific project by the development of a settlement predictive model to evaluate the severity of approach settlement.

2.3 Application of Approach Slabs

One of the most popular measures to solve bump problems is the application of approach slabs. Approach slabs refer to reinforced concrete slabs supported at one end on the bridge abutment and at the other end on the embankment fill, and aim to provide a gradual smooth transition or a ramp to span the problematic area between the roadway pavement and bridge structures. The schematic design of an approach slab is illustrated in Figure 2.2. A sleeper slab is sometimes used as a footing that extends the entire width of the roadway to equalize settlement beneath the roadway end, particularly in the case of Portland cement concrete pavements (Hoppe, 1999). Briaud (2002) summarized the function of an approach slab as:

- to span the void that may develop below the slab;
- to prevent slab deflection, which could result in settlement near the abutment;
- to provide a ramp for the differential settlement between the embankment and the abutment. This function is affected by the length of the approach slab and the magnitude of the differential settlement; and
- to provide a better seal against water percolation and erosion of the embankment

A survey (Schaefer and Koch, 1992) showed that 80 percent of new bridges would use approach slabs across the United States. Hoppe (1999) concluded that the frequency with which approach slabs are used varies drastically throughout the nation. 14 DOTs use approach slabs at all times for conventional abutments, while Kentucky is one of the only two DOTs (the other one is Maryland) that claims that approach slabs serve only to move the bump from the end of the bridge to the end of the approach slabs and practices a nouse policy. Obviously, there is no direct correlation between the application of approach slabs and the alleviation of bump effects, because no consensus has been obtained on the real benefits or drawbacks with regard to the use of approach slabs. Table 2.3 shows the percentage of approach slabs that are used in various states on interstate, primary, and secondary systems. It is evident that the use of approach slabs on the primary highway systems is prevalent, while Kentucky's response indicated that usage of approach slabs on interstate and primary systems is dramatically below the national average and also indicated low usage on secondary roads compared with most of other states. Hoppe (1999) also conducted a survey on the advantages and disadvantages of using approach slabs. Smooth ride, reduced impact on the backwall, and enhanced drainage control are commonly considered as the major benefits of approach slabs. On the other hand, initial high construction cost and maintenance problems with settling approach slabs are quoted as the main disadvantages. The reasons that no clearly defined benefits from the application of approach slabs was indicated by Kentucky will be investigated in this study. The primary benefits and drawbacks of using approach slabs are summarized in Table 2.4 and Table 2.5.

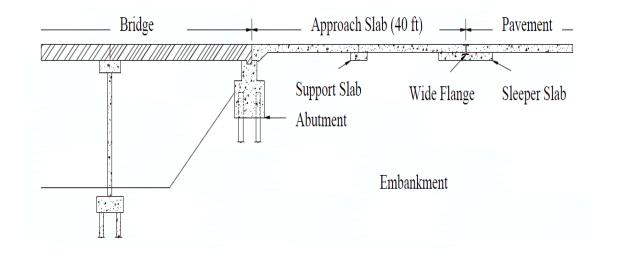


Figure 2.2 Schematic design of a typical approach slab (TxDOT, 2002)

Table 2.3 Current use of approach slabs (%) state interstate system, primary system, and secondary system (Hoppe, 1999)

State	Interstate	Primary	Secondary
State	System	System	System
AL	100	100	20
AZ	100	100	80
CT	< 50	< 50	< 50
DE	90	65	20
FL	100	100	100
GA	100	100	100
ID	small	small	very small
IL	100	100	90
IN	100	100	100
IA	100	75	10
KS	90	50	20
KY	35	35	35
LA	100	100	100
ME	>50	>50	>50

MD	<1	<2	0
MA	100	100	100
MN	90	69	8
МО	100	100	10
MS	100	100	85
MT	<5	<5	<1
NE	100	100	100
NV	100	100	100
NH	95	30	7
NM	80	80	80
NY	100	100	100
ND	75	60	0
ОН	100	95	75
OK	100	>90	0
OR	100	100	100
SC	100	100	30
SD	95	90	5
VT	100	100	100
VA	98	75	< 4
WA	75	50	25
WI	100	100	25
WY	90	75	50

Table 2.4 Advantage of Using Approach Slabs (Hoppe, 1999)

State	Smooth Ride	Reduced Impact	Control Drainage	Uniform Settlement	Lower Maint.	Seismic	Minimum Deviation	None
		1			Cost	Stability	at Joints	
AL	Δ	Δ						
AZ	Δ	Δ						
CA	Δ							
CT	Δ							
DE	Δ							
FL	Δ							
GA	Δ							
ID		Δ		Δ				
IL			Δ	Δ				
IN	Δ			Δ				
IO	Δ	Δ					Δ	
KS	Δ	Δ	Δ					
KY								Δ
LA		Δ						
ME	Δ	Δ		Δ				
MD								Δ
MA	Δ							
MN	Δ	Δ						
MS	Δ							
MO	Δ					Δ		
MT	Δ	Δ						
NE	Δ		Δ	Δ	Δ			
NH				Δ				
NJ	Δ	Δ						
NM	Δ							
NY	Δ							

ND	Δ				Δ		
ОН	Δ						
OK	Δ						
OR	Δ		Δ	Δ		Δ	
SD	Δ	Δ	Δ				
TX	Δ						
VT	Δ	Δ					
VA	Δ	Δ		Δ			
WA	Δ					Δ	
WI	Δ	Δ			Δ		
WY		Δ	Δ	Δ			

Table 2.5 Disadvantage of using approach slabs (Hoppe, 1999)

	Higher	Maint.	Erosion	Bending	Problems			Increased
State	Initial			Stress at	w/Staged	Joints	Rough	Construction
	Cost			Backwall	Construction	Surfa		Time
CA	Δ							
DE	Δ	Δ	Δ					
GA		Δ	Δ					
IL	Δ							
IN	Δ							
IO	Δ	Δ						
KS	Δ	Δ						
KY	Δ	Δ						
LA				Δ				
ME	Δ							
MN		Δ						
MO	Δ					Δ		
MT		Δ	Δ					
NE	Δ	Δ						
NJ		Δ						
ND	Δ							
OK	Δ							Δ
OR	Δ						Δ	Δ
SD	Δ	Δ						
VA		Δ	Δ					
WA	Δ				Δ			
WI	Δ	Δ						
WY	Δ							

It is a consensus that the usage of an approach slab cannot influence the magnitude of the differential settlement that will ultimately develop. In other words, embankment fill settlement would still occur even though approach slabs are used. In that situation, a void may be formed mainly due to soil erosion and fill deformation beneath the approach slab, and approach slabs would play a role as beams that provide smooth transitions between roadway pavement and bridge structures. A study (Zaman, 1990) concluded that approach slabs may alleviate bump problems to some extent in the short run. However, in the long run, the bump problem would get worse in the scenario that the void beneath the approach slabs is so big that they cannot experience the vehicle load due to fractures.

Another debate refers to a subject of when to initiate an approach slab, including design and construction details in various site conditions. Martin et al. (2013) considered that the structural design and construction issues, besides geotechnical in nature, have an important impact on the performance of approach slabs, and a basic design of approach slab is recommended. Most think whether an approach slab would be used or not primarily depends on traffic volume and/or functional classification of the road. A couple of factors are involved in approach slab usage criteria but no consensuses have been reached. Improper design policies may generate two opposite results: if approach slabs are overdesigned, over-expenditure would be burdened; otherwise, cracking or complete failures of approach slabs due to insufficient reinforcement in the long term may cause an abrupt gradient. Due to the complexity of geotechnical conditions of different sites, pavement techniques, and joint expansion at approach slab ends, design and construction of approach slabs are being studied to achieve an equilibrium. Kentucky Structural Design Manual (2005) stipulates a general design criteria of approach slabs and states

that approach slabs should be used as directed by a project manager, however, no standard drawings or detailed design policies of approach slabs have been given and no issues have been indicated on when to initiate an approach slab. A survey conducted by Allen et al. (2002) indicated that only 5 out of 12 districts often place the approach slabs below grade as a prevention technique and only 2 districts have the experience in using sleeper slabs, which is dramatically below the national average. In an effort to further understand the two debatable subjects, effectiveness of approach slabs on mitigating the differential settlement is evaluated by statistical analysis between bridges with approach slabs and bridges without based on a large amount of bridges in Kentucky.

2.4 Critical Review of Previous Studies

To provide detailed background information describing previous studies related to this topic, and to better understand the mechanisms leading to the formation of bridge approach settlement problems, an extensive literature review of previous major research was conducted. Because of the considerable cost spent on mitigating/eliminating bridge approach settlement, Federal Highway Administration (FHWA) and State Department of Transportation(s) (DOTs) have sponsored substantial studies to identify the causes, mitigation measures, and maintenance techniques on the topic of bridge approach settlement or bump problems at the ends of the bridge. Various state DOT studies in the last 50 years have been collected and major works of these studies are listed in Appendix A.

3 DATA COLLECTION

3.1 Model Inputs Identification

As it is shown in the literature review, it is clear that a variety of opinions persists as to the causes of bridge approach settlements and mitigation methods. In order to obtain comprehensive and meaningful relationships between approach settlement levels and various contributors, it is necessary to identify as many initial causing factors as possible because no consensuses have been reached on the role of each factor affecting the final approach settlement formation. In other words, all contributing factors need to be collected and analyze to see the weight of each variable to the predictive model, and then select some of them to establish the optimum predictive model. A series of potential variables is identified and its collection methods are presented. The main model inputs include: (i) bridge length, width, and approach year; (ii) approach type; (iii) abutment type; (iv) embankment fill material and height; (v) foundation soil type (consistency) and thickness; (vi) transportation districts; (vii) Average Daily Traffic (ADT); (viii) drainage.

1. Basic project information

The basic quantitative variables that could be identified include bridge length, width, approach year (year built), and ADT. The age of the bridge approach could negatively affect the embankment fill performance in terms of controlling deformation underneath the approach, especially at the expansion joints next to the slab for those bridges with approach slabs (Laguros et al.,1990 and Bakeer et al., 2005). Traffic volume has been considered as a major factor in the performance of the bump severity, while the opinions regarding the effects of

traffic volume are divergent. High volume traffic has been found to be a compelling reason for the formation of approach settlement (Wong and Small, 1994). On the one hand, Lenke (2006) concluded that bump severity was found to increase with vehicle velocity, vehicle weight, especially heavy truck traffic, and ADT. On the other hand, Bakeer (2005) noted that speed limit and traffic volume almost have no effect on the performance of bridge approaches.

2. Approach Type

The bridge approaches are classified into two categories: (i) bridges with approach slabs or Portland cement concrete approaches are termed as rigid; (ii) bridges without approach slabs or approach built with asphaltic concrete cement are termed as flexible. Evaluation of approach slabs effect on mitigating differential settlement at bridge ends will be investigated in a separated section in this study.

3. Abutment type

Abutment must have backwalls to keep the embankment from covering up the beam ends and to support possible approaches, for which compatibility between abutments and bridge approaches can be guaranteed. Generally, abutments can be classified into integral (movable) or non-integral (conventional or stub) types (Greimann, 1987). In order to characterize abutments more accurately, different types of abutments can be grouped into closed, perched, or spill-through. Closed abutments originate from the fact that tall walls are built to hold back the approach embankment, which results in higher lateral earth pressure. Closed

abutments must be constructed before the approach embankment, therefore there is a potential for closed abutment to settle more because it can be more difficult to bring large compaction equipment to compact the fill (Dupont and Allen, 2002). Perched abutments are usually construed on piles or shallow spread footings, so the embankment can be placed to the bottom elevation of the abutment. The embankment fill can be compacted to a good condition with an advantage that the lateral forces on perched abutments are the lowest of the other types, which leads to less lateral movement (Dupont and Allen, 2002). Spill-through abutments usually are placed on columns and must be constructed before the embankment. In this type, transmission of lateral force through columns is allowed. Embankment fill is also difficult to compact well since the abutments must be constructed before the embankment. Three typical bridges in different abutment types are illustrated in Figure 3.1, 3.2, and 3.3.

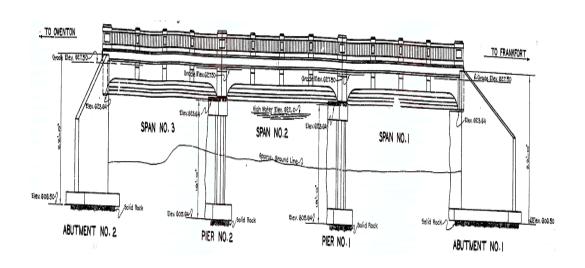


Figure 3.1 A typical full height closed or high abutment (bridge No. 094B00041N)



Figure 3.2 A typical perched abutment (bridge No. 056B00454R)

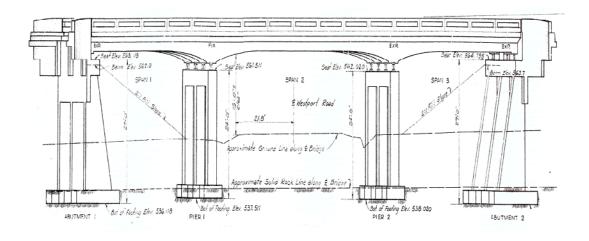


Figure 3.3 A typical spill-through abutment (bridge No. 056B00489N)

4. Embankment fill material and height

The deformation of the backfill material has been perceived and proven to be one of the crucial factors to cause bridge approach settlement (Hopkins, 1973; Wahls, 1990; Lenke, 2006; Helwany, 2007). Sam Helwany (2007) concluded that the causes of vertical and horizontal deformation of the backfill material result from volumetric changes in the soil, lack of compaction, post-construction consolidation settlement, and bearing capacity failure of the embankment soil. In

addition to deformation, lateral stability and shear strength of backfill material should also be considered as important factors in determining the overall stability of backfill. Lateral confining forces are usually considered significant for foundation soil, while on embankment backfills, the confinement effects receive much less attention (Wahls, 1990). In general, cohesive soils are more difficult to compact to their optimum moisture content and density when compared to coarser or granular fill materials (Hopkins, 1973). Some studies (Hopkins, 1973; Wahls, 1990) indicated that thick embankments tend to settle more than shallow ones. It is difficult to retrieve the fill material type based on the current storing system due to a large time span. For old bridges, there are no detailed instructions on what kind of materials were used in the design plan. For new bridges, embankments are usually constructed according to standard drawings (Std. Drwg. RGX-100; 105) for most bridges in Kentucky unless there is a note specifying that. Such a standardized fill composed of stabilized soil is inappropriate to be classified as a normal fill such as clay, silt, or sand. Consequently, the embankment height is merely considered as the proper variable that reflects the contribution of the embankment fill.

5. Foundation soil type (consistency) and thickness

Many studies (Hopkins, 1969; Wahls, 1990; Dupont and Allen, 2002) concluded that consolidation settlement of foundation soils contributed significantly to approach settlement. Foundation settlement typically results from a combination of dynamic traffic loads applied at the embankment surface and static load due to the weight of the embankment itself (Dupont and Allen, 2002). Although it is

easy to find the occurrence of settlement and determine its magnitude, the reasons for this problem are usually difficult to identify because of the variability of the engineering properties of foundation soils. In addition, it is difficult to access the foundation after construction because it is buried deep beneath the bridge approach/roadway surface (Wahls, 1990). More settlement would occur in cohesive soils after construction than non-cohesive soils because cohesive soils, such as soft or high plasticity clays, are more susceptible to soil plastic deformation, which can aggravate the approach settlement.

Foundation soil is usually a mixture of several types of soil, hence it is inappropriate to grossly categorize the foundation soil type as silt, clay, sand, or rock. However, the consistency of the foundation soil could be identified based on its engineering properties and composition of each type of soil. This research suggests that the consistency of the foundation soil could be classified as soft, stiff, very stiff, or hard, corresponding to different types of soil. The foundation soil thickness underneath the embankment is also considered as a variable to evaluate its effect, and it usually refers to the elevation difference between original ground and hard rock. The foundation soil depth is usually equal to zero for closed or perched abutments because they are usually built on hard soils/rock with stern borehole parameters. For pile-supported abutments, the foundation soil depth is normally equal to the length of the piles that are supported on hard rock.

6. District

When and how to initiate corrective measures when a differential approach settlement occurs vary from district to district. In addition, the current practice with regard to bridge maintenance is different between transportation districts. That is the main reason why the geographic regions are adopted as a major input factor.

7. Drainage

Poor drainage around the bridge abutments and under the approach pavements is a commonly perceived cause of bridge approach settlement. Many transportation agencies (such as Texas DOT, Virginia DOT, Iowa DOT, and Colorado DOT) documented the importance of the drainage and soil erosion. Improper, damaged, or blocked drainage systems can cause erosion in the abutment and embankment slope, which increases soil erosion and enlarges void formation (Hoyos, 2009). There are no uniform guidelines for the use, design, and construction of drainage systems nationwide. Therefore, it is tough to define drainage issues as numeric or categorical variables that are considered as inputs to develop a model to evaluate severity of approach settlement even though drainage has been perceived as one of the most important causing factors. Even if the drainage could be classified as a binary variable that whether the drainage design has been considered or not for an approach, it would make a futile effort of considering drainage as a factor in logistic regressions because almost every approach has adopted drainage design as required by KYTC. Another reasonable option defining drainage as a numerical variable is to assign different grades by rating different designs of

drainage, but this information is not always available in current storing system in KYTC.

3.2 Other Lurking Variables

1. Temperature cycle

Most bridges are characterized as integral or non-integral abutment bridges with the main difference in the connection between the bridge superstructure and the abutment. The non-integral bridges are usually supported on bearing connections that allow the superstructure to move longitudinally without transferring lateral loads to the abutment. Generally, battered piles are typically installed to accommodate for lateral loads on the abutment backwall and expansion joints are used as connections to tolerate the relative movement between the superstructure and the abutment. While for integral bridges, the superstructure is rigidly connected to the abutment in order to eliminate the use of bearing plates and forbid the relative movement. Bridge superstructure and approach usually expand and contract because of concrete thermal strain characteristics when they are exposed to temperature fluctuations. Both integral and non-integral bridges are vulnerable to differential settlements. However, the integral bridges are more susceptible to temperature fluctuations as the abutment backfill is more affected by temperature changes for the two reported problems (Arsoy et al, 1999):

- Development of a void near the abutment face
- Differential settlement between the bridge superstructure and approach embankment

This research does not consider this variable as an important variables due to the following two reasons:

- Most bridges used as research subject are non-integral bridges that are more resistant to temperature fluctuations
- All the bridges are subjected to the same temperature changes, therefore, it
 is meaningless to list this variable as an input for statistical analysis. But
 the influence from the temperature changes is still exist
- 2. Connection between the approach slab and the bridge

Several issues are involved in the connection between the approach slab and the bridge, including the approach slab dimensions, paving notch, sleeper beam, etc. Kentucky is one of the two states that consider the application of approach slab has little effect on the elimination/mitigation of differential settlement even though approach slabs are widely used nationwide. In addition, Hoppe (1999) conducted a survey (Table 3.1) and concluded that most of the bridges in Kentucky are non-integral and no doweled or tied connection between approach slab and bridge are installed. Therefore, whether approach slabs were used or not, it is more significant to consider the use of approach slabs as a model input instead of considering this input in more detail.

Table 3.1 Connection between approach slab and bridge (Hoppe, 1999)

	Non-integ	ral Bridges	Integral	Bridges	Integral Abutments
State	Doweled or Tied	No Connection	Doweled or Tied	No Connection	Not Used
AL	×				×
AZ		×			
CA	×		×		
СТ		×			
DE		×			×
FL	×				×
GA		×		×	
IA	×			×	
ID	×		×		
IL	×		×		
IN		×	×		
KS	×		×		
KY		×			
LA	×				
MA	×			×	
MD					×
ME		×	×		
MN		×	×		
МО	×				
MS		×			×
MT		×			
ND				×	

NJ		×			×
NH	×				
NV	×			×	
ОН	×				
OK	×		×		
OR	×		×		
SC	×				
SD		×		×	
TN	×				
TX	×				×
VA		×	×		
VT	×				
WA	×		×		
WI		×			
WY	×		×		

3.3 Collection Method

Bridge length, width, year, and ADT could be easily retrieved from the KYTC online service "Bridge Data Miner" once a bridge is specified.

Once a bridge sample is determined, interviews with KYTC maintenance engineers would be conducted and bridge plans would be requested. Approach type for a bridge could be identified if the design plan for that bridge could be obtained and reviewed.

The abutment type can be identified explicitly from the site observation and verified from the design plan that are available in the design report at KYTC.

Embankment height refers to elevation difference between the original ground level and the surface of backfill. The estimated value could be determined from the bridge elevation plans at KYTC.

Foundation soil information is contained in sounding plans that are included in the design plans for most bridges. For other bridges, foundation soil type can be grossly determined by reviewing a geotechnical report for a given project that provided by Kentucky Geological Survey (KGS). Foundation thickness underneath the embankment here measures from the bottom of the embankment to a dense or stiff deep soil stratum. It is difficult to distinguish the bond between soft and dense soil; therefore, precision of foundation soil thickness would be controlled within 1~2 feet.

Drainage design has not been considered as a separate topic from the review of some old bridge plans. For newer bridges (less than 20 years), the drainage design varies from case to case. The proposed research will not consider this available as an input but discussion related to this issue will be involved in the section of the current practice that may effectively mitigate the bump problems.

The data base development was based on three sources: (I) basic bridge information from the KYTC online service "Bridge Data Miner", (II) interview of local bridge maintenance personnel, and (III) bridge inspection records and design plans maintained at the KYTC.

3.4 Model Output

Bridge approach settlement is the output of the anticipated model. The approach settlement here doesn't refer to the real settlement in the form of inches that the approach has experienced from the time it is opened to traffic. This study attempts to develop a

model by using ordinal/nominal logistic regression based on a large-scale sample. No records regarding the real approach settlement are available in the current maintenance system. It is impractical to measure the real approach settlement of every bridge in the selected sample (basically 600 bridges). It is a wise way of addressing the output from the macro angle that classify the approach settlement severity as three levels: minimal, moderate, and severe.

One study conducted by Kentucky Transportation Center (KTC) (Dupont and Allen, 2002) indicated that the best practice to alleviate the bridge bump problems is to establish up-to-date maintenance activities, by scheduling periodic repair activities as well as occasional required maintenance. Maintenance techniques to rectify distressed/faulted approach generally include local patching, mud/slab jacking, asphalt overlay, and replacement (Wahls, 1990; Briaud, 1997; Dupont and Allen, 2002; Hoyos, 2009). The term "local patching" refers to the maintenance performed at a specified spots on the approach pavement. Mud/slab jacking is generally performed on bridges with approach slabs. It refers to a quick, convenient, and economical technique of raising a settled rigid approach to a desired elevation by pressure injecting cement grout or mud-cement mixtures (Hoyos, 2009). Asphalt overlay is adopted to improve the riding conditions of the entire roadway. Replacement of an approach is necessary where a highly deteriorated bridge approach has occurred due to the differential settlement. This technique is normally more expensive and time-consuming than other correction techniques. A good understanding of the mechanisms of these maintenance techniques is an essential prerequisite to define the severity of a bridge approach settlement.

There are two methods used to identify the severity of an approach settlement:

- 1. One is determined by the frequency of maintenance or subjective judgment of district maintenance engineers based on their work experience. If more maintenance on correction approach settlement has been performed toward a bridge, the worse bump situation can be claimed. This method is used to judge the settlement levels of the first bridge sample from the survey.
- 2. After interviews with several KYTC maintenance engineers, there is no system or archive regarding maintenance history for a bridge even though some corrective actions were performed. However, there is an archive, named "Pontis", of most of bridges in Kentucky which contains all inspective activities and suggested mitigation methods for the emerged problems, including suggestions of solving approach settlement. From the inspection history, the maintenance actions could be assumed to have been occurred. It is important to note that inspection history is not equal to maintenance history, and the validity of using inspection history instead of maintenance will be verified by statistical analysis in the next chapter. Therefore, the other method of rating the severity of an approach settlement is originated from the inspection history "Pontis."

3.5 Rating Output Levels

No uniform system has been established for rating bridge approaches due to a complicated mechanism leading to differential settlement. Four rating systems as illustrated in chapter one are derived from micro level perspectives, while this paper rates the riding quality of an approach from macro level perspectives. The macro level methods here refer to techniques that determine the differential settlement scale by assessing the inspection history from "Pontis", basically an internal network server used

for storing inspection history of approaches of most bridges in Kentucky, or surveying the local bridge maintenance engineers . The "Pontis" database includes the last 6 to 8 years' inspection history of most bridges in Kentucky except for a few bridges in district four and district eight, and could be acquired from the KYTC. The other macro method is performed by electronic survey and district interviews, and the differential settlement scale of bridges from the survey is verified by local bridge engineers based on their work experience.

According to the macro level evaluation methods, the differential settlement scale could be classified as minimal, moderate, and severe, which corresponds to the approach performance status good, fair, and poor. Table 9 and Table 10 are given to summarize the similarities and differences between micro and macro methods in determining the differential settlement scale.

Table 3.2 Micro methods in determining differential settlement scale

		Micro Method		
Rating	Description	Actual Settlement	IRI	
		(Inch)	(mm/m)	
Very	No Bump	0	0~4	
Good	No Bump	U	0.54	
Good	Slight Bump	~1 inch	5~8	
Fair	Moderate Bump – Readily Recognizable	~2 inch	9~12	
Poor	Significant Bump – Repair Needed	~3 inch	13~16	
Very Poor	Large Bump – Safety Hazard	> 3 inch	> 17	

Table 3.3 Macro method in determining differential settlement scale

		Marco Met	hod
Rating	Description	Inspection History (Pontis): Characteristics	Survey: Characteristics
Good	No bump or minimal/slight bump	No or less than 1.5 inches approach settlement was detected and no maintenance work is needed to correct differential settlement.	No maintenance work has been performed on fixing differential settlement since opening.
Fair	Moderate bump	Settlement ranging from 1.5 to 3 inches was detected and repair work including wedging repair, local patching, and mud jack may be needed. Problem may repeat in periodical inspection reports.	Differential settlement can cause a miner impact and 1 to 3 times of maintenance work have been performed on fixing it.

			Differential settlement
Poor	Severe bump	Settlement more than 3inches was detected and problem lasts for a long time. Transition have to be resurfaced or approach slabs need to be replaced.	can cause a major impact and maintenance work should be performed every couple of years.
			or years.

3.6 Bridge Selection

3.6.1 Information from a Survey

An electronic questionnaire was created by "Surveygizmo" and distributed to managers of each transportation district. Then these managers sent this link to the specific bridge engineers that are responsible for bridge inspection or maintenance to identify and quantify differential settlement at bridge ends throughout each district. The purpose of this survey is to obtain information regarding the existence of bridges with "bump" issues, identify major causes of differential settlement at bridge ends, and evaluate the existing record keeping procedures regarding maintenance of "bump" issues. There are 35 bridge engineers participated in this survey, but only 18 engineers provided the completed and feasible information as requested. 131 bridges with different settlement severity were obtained. The distribution of these bridges is shown in Table 3.4. No bridges from District two and District eight are fed back. The bridge plans for only 87 bridges were able to be identified in the current bridge archive from KYTC due to the reasons that the other bridges are too new to be included in the current archive or some information for these bridges are missed. These bridges are composed of sample one for

analysis the relationship between approach settlement levels and its predictors in the next chapter.

Table 3.4 Distribution of the bridges with different settlement levels from each transportation district for sample one

District		Total No.		
District	Minimal	Moderate	Severe	Total No.
1	2	2	2	6
3	0	0	3	3
4	0	2	3	5
5	0	9	1	10
6	6	23	26	55
7	0	4	5	9
9	0	3	3	6
10	2	2	2	6
11	10	6	9	25
12	0	0	6	6
	20	51	60	131

3.6.2 Information from the Transportation Cabinet

The primary source of data from the KYTC is the inspection history named "Pontis". It is basically an internal network server used for storing inspection history of approaches of most bridges in Kentucky. A simple random sample was created as sample two by randomly selecting 600 bridges from "Pontis". If bridges without inspection history were selected, these bridges would be deleted, and the selection process would be iterated to obtain 600 bridges with completed inspection history.

A simple random sampling was used to generate sample two, which means every bridge with the equal opportunity to be selected. Therefore, a transportation district which contains more bridges in the "Pontis" would has a higher probability that more bridges would be selected in the sample two. The method also guarantees that the sample two includes bridges from every transportation district.

Table 3.5 Distribution of the bridges with different settlement levels from each transportation district for sample two

District	Settlement Levels			Total No.
	Minimal	Moderate	Severe	Total No.
1	97	65	5	167
2	0	6	12	18
3	11	13	4	28
4	0	0	1	1
5	1	17	18	36
6	11	39	18	68
7	7	25	40	72
8	0	1	1	2
9	3	16	11	30
10	21	13	0	34
11	5	31	39	45
12	36	47	16	99
	192	273	135	600

3.7 Limitations of Data

Sampling is an important component of any piece of research because of the significant impact that it can have on the quality of your results/findings. The samples used in this research would be studied to obtained conclusions that stands for the entire population.

Hence the accuracy of the conclusions is usually dependent upon the reliability of the data. This section mainly discusses some of the limitations of the data for sample one and sample two, respectively.

1. Limitation of the data for sample one

The biggest limitation of the data for sample one is the sample size. Even 131 bridges were collected for sample one, but only 87 with completed information can be used for analysis. Our research team had tried to contact as many bridge maintenance engineers as we can to obtain a sample with sufficient individuals. For logistic regression which discussed in the next chapter, a model constructed by a small sample size may lead to unreliable conclusions.

Several responders provided the same bridges with different settlement levels. This phenomenon can be explained by two aspects. First, the maintenance bridge engineers evaluate the settlement level for a bridge based on his or her work experience. The work experience for each respondent is different. In many cases, the maintenance engineer had been working for a particular district for a length of time that was much shorter than the age of the approach. Some engineers may work more than several decades in a district, while some engineers may just start their work life. If they judge the settlement level for a bridge based on maintenance times based on their work experience, they may conclude differently. In this scenario, a higher settlement level would be adopted for a bridge given different settlement levels by different respondents. For example, moderate and minimal settlement levels were given for the same bridge, moderate would be adopted for this bridge. Second, different rating criterion may be applied by different respondents. Some bridge maintenance engineers use the number of maintenance times to evaluate the

settlement levels, while some bridge maintenance engineers use the observed settlement in inches to evaluate the settlement levels. Different evaluation criterion may conclude different results.

Generally, the bridges with the worst settlement situations may impress the responders most. In this case, sample one may include more bridges with severe settlement than other settlement levels. The observed results verified this assumption. There are 60 bridges with severe settlement while 20 approaches in minimal and 51 approaches in moderate. In this sense, sample one may lead to selection bias.

2. Limitation of the data for sample two

A simple random sample is a subset of individuals chosen from a larger population. Each individual is chosen randomly and entirely by chance, such that each individual has the same probability of being chosen at any stage during the sampling process. It was envisioned that no one type or factor had significant dominance on the selection process. A simple random sample is an unbiased surveying technique. Based on the above considerations, the random sampling method was used to generate sample two. In this sense, sample two would not lead to selection bias.

The system "Ponits" only provides the inspection history for most of the bridges in Kentucky in the last ten years. The current situation of the settlement levels could be identified without giving earlier maintenance actives. Even if the settlement level for a bridge could be summarized by using last years' maintenance history, there is still a chance that this bridge was rebuilt or approach slabs were replaced more than ten years

ago. In this case, the current settlement level for an approach cannot reflect the true settlement level.

In the inspection history "Pontis", there are exact maintenance times and what kind of maintenance activities were undertaken for some bridges. While there are observed true settlement in inches were measured for some bridges. It is not a problem to evaluate the settlement level for an approach solely based on one evaluation criteria, maintenance times or observed settlement, shown in Table 3.3. For some bridges, the "Pontis" not only provides maintenance times but also observed accumulative settlement. There is a chance that two different settlement levels for an approach may be reached based on two evaluation criterion. In this situation, the higher settlement level would be selected for that bridge.

4 DATA ANALYSES

The major goal of this study is to estimate the probability of occurrence of each of the three settlement levels as well as to estimate the odds of severity choice as a function of the covariates and to express the results in terms of odds ratios for severity choice given bridge characteristics. The independent variables of interest both consist of count data and categorical (ordinal and nominal) variables. The outcome (response) variable is ternary: minimal, moderate, or severe, and it is assumed as ordinal under the assumption that the levels of approach settlement have a natural ordering (low to high), but the distances between adjacent levels are not consistent (see Table 3.3).

Logistic regression is a type of a probabilistic statistical classification model that is used for predicting the outcome of a categorical dependent variable based on one or more predictors or features. Two methods are usually used to conduct logistic regression analyses. The ordinal regression procedure is usually used to build models, generate predictions, and evaluate the importance of various predictor variables in cases where the dependent variable is ordinal in nature. Multinomial logistic regression is used to model nominal outcome variables, in which the log odds of the outcomes are modeled as a linear combination of the predictor variables. Because it is uncertain to treat settlement severities as a true ordering variable, ordinal logistic regression will be carried out at first, and then multinomial logistic regression will be implemented if the assumption that the slope coefficients in ordinal regression are the same across response categories is violated.

A code sheet for the variables that are included in data analyses for identifying the relationship between each parameter (all parameters) and dependent variable is given in Table 4.1.

Table 4.1 Code sheet for the variables in samples

Variable	Description	Codes/Values	Name
1	Geographical location	District Number 1=District 1 2=District 2	DISTRICT
2	Age of bridge approaches	Years	AGE
3	Bridge length	Ft.	LENGTH
4	Bridge width	Ft.	WIDTH
5	Average daily traffic	Number/day	ADT
6	Abutment type	1=closed 2=spill-through 3=perched	ABUT
7	Approach type	1=flexible 2=rigid	APPT
8	Embankment height	Ft.	EH
9	Foundation soil depth	Ft.	FSD
10	Foundation soil consistency	1=soft 2-stiff 3=very stiff 4=hard	FSC
11	Bridge approach settlement	1=minimal 2=moderate 3=severe	SEVERITY

4.1 Approach Age

4.1.1 Sample One

This section is interested in the approach age that influence whether an approach is experiencing minimal settlement or severe settlement. It is helpful to start with exploring the relationship between approach age and the settlement severity for sample one. Had

the outcome variable been continuous rather than ternary (polytomous), a scatterplot of the outcome versus the independent variables was formed. This scatterplot may be used to provide an impression of the nature and strength of any relationship between the settlement severity and the causative variables. A scatterplot of the data in sample one is given in Figure 4.1. In this scatterplot, all points fall on one of three parallel lines representing the settlement levels. There is some tendency for the bridges with moderate or severe settlement to be younger than those with minimal settlement. While this plot does depict the polytomous nature of the settlement levels quite clearly, it is not able to provide a clear picture of the nature of the relationship between AGE and SEVERITY.

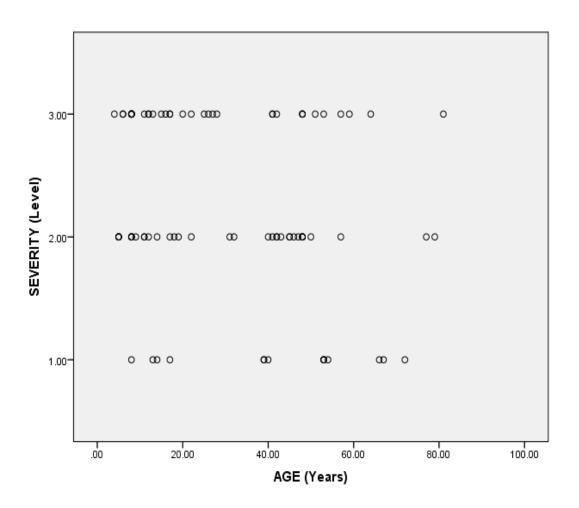


Figure 4.1 Sample One: Scatterplot of approach settlement levels by approach age

The main problem with this scatterplot is that the variability in SEVERITY at all ages is large, and it is difficult to see any functional relationship between AGE and SEVERITY. An effective way of solving this problem, while still maintaining the structure of the relationship between the dependent and the independent variable, is to create intervals for the independent variables by removing some variation and compute the mean of the response within each group. This strategy is used to group the independent variable AGE into four categories (AGEG) defined in Table 4.3. The percentage of SEVERITY with minimal and severe are also computed. Figure 4.2 and Figure 4.3 present two plots of the percent of approach with minimal or severe settlement versus the midpoint of each age interval. By examining Figure 4.2, it shows that as approach age increases within 0~30 years, the proportion of approaches with minimal settlement decrease, and then as approach age increase within 30~60 years, the proportion of approaches with minimal settlement increases. By examining Figure 4.3, the proportion of approaches with severe settlement increases as age increases during the stage of 0~30 years. Then, the proportion of approaches with severe settlement decreases as age increases within 30~45 years, and finally the proportion of approaches with severe settlement increases as age increases after 45 years. The variation of the proportion of approaches with minimal settlement shows an almost reverse tendency with the variation of the proportion of approaches with severe settlement. This strategy above provides, to some extent, considerable insight into the relationship between AGE and SEVERITY. However, the functional form for this relationship need to be analyzed by logistic regression.

Table 4.2 Sample One: Frequency table of age group (AGEG) by SEVERITY

Age group		Severity		Total	Mean	
(year)	Minimal	Moderate	Severe	Total	Minimal	Severe
0~15	3	13	16	32	0.094	0.500
16~30	1	4	9	14	0.071	0.643
31~45	3	9	3	15	0.200	0.200
Above 45	7	10	9	26	0.269	0.346
	14	36	37	87		

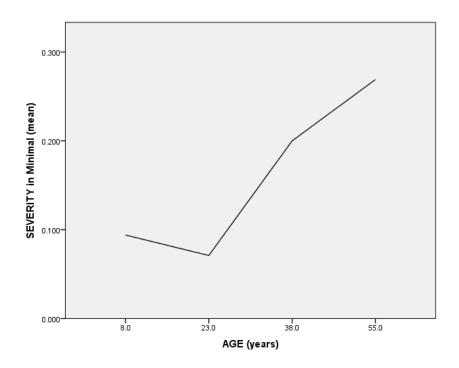


Figure 4.2 Sample One: Plot of the percentage of approaches with minimal SEVERITY in each age group

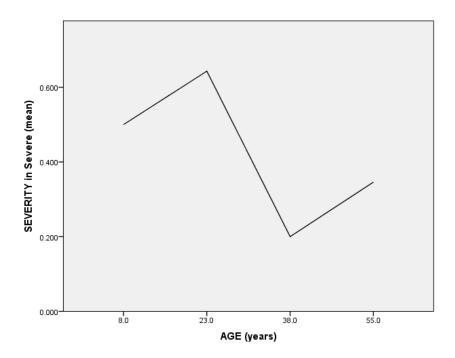


Figure 4.3 Sample One: Plot of the percentage of approaches with severe SEVERITY in each age group

Many statistical packages are able to conduct logistic regression analyses. Statistical Package for the Social Sciences (SPSS) is employed to explore the relationship between AGE and SEVERITY as well as other relationships in the following logistic regressions. Since the outcome is an ordinal categorical variable with three levels, the program of ordinal logistic regression is adopted at first. Below the ordinal logistic regression command is used to run a model predicting the outcome variable SEVERITY, using AGE. The output is shown in Table 4.3 ~ Table 4.5, each of which is discussed below.

Table 4.3 Sample One: Model fitting information of ordinal logistic regression between AGE and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	129.841			
Final	125.172	4.668	1	.031

- Model: This indicates the parameters of the model for which the model fit is calculated. "Intercept Only" describes a model that does not control for any independent variables and simply fits an intercept to predict the outcome variable. "Final" describes a model that includes the specified independent variables and has been arrived at through an iterative process that maximizes the log likelihood of the outcomes seen in the outcome variable. By including the independent variables and maximizing the log likelihood of the outcomes seen in the data, the "Final" model should improve upon the "Intercept Only" model. This can be seen in the differences in the -2(Log Likelihood) values associated with the models.
- -2(Log Likelihood): This is the product of -2 and the log likelihoods of the null
 model and fitted "final" model. The likelihood of the model is used to test of
 whether all independent variables' regression coefficients in the model are
 simultaneously zero and in tests of nested models.
- Chi-Square: This is the Likelihood Ratio (LR) Chi-Square test that at least one of the predictors' regression coefficient is not equal to zero in the model.

- df: This indicates the degrees of freedom of the Chi-Square distribution used to test the LR Chi-Square statistic and is defined by the number of predictors in the model.
- Sig.: This is the probability of getting a LR test statistic as extreme as, or more so, than the observed under the null hypothesis; the null hypothesis is that all of the regression coefficients in the model are equal to zero.

The p-value for this regression model is 0.031 that is smaller than a specified alpha level (if 0.05 is set in this study). This would lead to conclude that this model fits better than an empty model (i.e., model with no independent variables). In other words, the relationship between AGE and SEVERITY can be described by this model.

Table 4.4 Sample One: Parameter estimates of ordinal logistic regression between AGE and SEVERITY

			Std.	Wald	дf	Sig.	95% Confide	ence Interval
			Estimate Error		aı	Dig.	Lower Bound	Upper Bound
	[SEVERITY	-2.349	.454	26.766	1	.000	-3.239	-1.459
Threshold	= 1.00]	2.51)	. 15 1	20.700	1	.000	3.237	1.137
Timesitora	[SEVERITY	312	.363	.739	1	.390	-1.024	.400
	= 2.00]	.312	.505	.,,,,	1	.570	1.021	.100
Location	AGE	021	.010	4.661	1	.031	040	002

SEVERITY=1.00: This is the estimated cutpoint on the latent variable used to
differentiate low SEVERITY from middle and high SEVERITY when values of
the independent variables are evaluated at zero. Subjects that had a value of 2.349 or less on the underlying latent variable (SEVERITY) that gave rise to

SEVERITY would be classified as low SEVERITY given the approaches' age were zero.

- SEVERITY=2.00: This is the estimated cutpoint on the latent variable used to differentiate low and middle SEVERITY from high severity when values of the independent variables are evaluated at zero. Subjects that had a value of -0.312 or greater on the underlying latent variable that gave rise to SEVERITY would be classified as high SEVERITY given the approaches' age were zero. Subjects that had a value between -2.349 and -0.312 on the underlying latent variable would be classified as middle SEVERITY.
- Estimate: These are the ordered log-odds (logit) regression coefficients. Standard interpretation of the ordered logit coefficient is that for a one unit increase in the predictor, the response variable level is expected to change by its respective regression coefficient in the ordered log-odds scale while the other variables in the model are held constant. Interpretation of the ordered logit estimates is not dependent on the ancillary parameters; the ancillary parameters are used to differentiate the adjacent levels of the response variable. However, since the ordered logit model estimates one equation over all levels of the outcome variable, a concern is whether our one-equation model is valid or a more flexible model is required. The odds ratios of the predictors can be calculated by exponentiating the estimate.
- Std. Error: These are the standard errors of the individual regression coefficients.
- Wald: This is the Wald chi-square test that tests the null hypothesis that the estimate equals zero.

• 95% Confidence Interval: This is the Confidence Interval (CI) for an individual regression coefficient given the other independent variables are in the model

In this model, if an approach were to increase AGE by one year, the ordered log-odds of being in a higher SEVERITY (i.e., from minimal to moderate, or from moderate to severe) category would decrease by 0.021 while the other variables in the model are held constant (only one dependent variable is used here). The Wald test statistic for the independent variable is 4.661 with an associated p-value of 0.031. If the alpha level 0.05 is selected, the null hypothesis would be rejected and conclude that the regression coefficient for AGE has been found to be statistically significant in estimating SEVERITY given other variables, although none others in this model, are in the model. In other words, AGE is found statistically associated with SEVERITY. For ordinal logistic regression, the null hypothesis states that the location parameters (slope coefficients) are the same across response categories. The SPSS output shows that this null hypothesis cannot be rejected due to a high significance level 0.342 as shown in table of test of parallel lines.

Table 4.5 Sample One: Test of parallel lines of ordinal logistic regression between AGE and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	125.172			
General	124.269	.903	1	.342

General: This table is the output that tests the proportional odds assumption. This is commonly referred to as the test of parallel lines because the null hypothesis states that the slope coefficients in the model are the same across response categories (and lines of the same slope are parallel). Since the ordered logit model estimates one equation over all levels of the response variables, the test for proportional odds tests whether this one-equation model is valid. If a null hypothesis was rejected based on the significance of the Chi-Square statistic, it would conclude that ordered logit coefficients are not equal across the levels of the outcome, and a less restrictive model (i.e., multinomial logit model) may fit better. If the null hypothesis was failed to be rejected, the assumption would hold. The significance of Chi-Square statistic for this model is 0.342>0.1, which implies that the ordinal logistic regression is appropriate for obtaining the relationship between AGE and SEVERITY.

Because this model is found statistically significant. The response Y in this study has three levels which are represented by 1, 2, and 3, and the associated probabilities are π_1 , π_2 , and π_3 . The relationship between AGE and SEVERITY for sample one can be described by the following equations:

$$Logit \frac{\pi_1}{1 - \pi_1} = Logit \frac{\pi_1}{\pi_2 + \pi_3} = -2.349 - 0.021 AGE \tag{4.1}$$

$$Logit \frac{\pi_1 + \pi_2}{1 - (\pi_1 + \pi_2)} = Logit \frac{\pi_1 + \pi_2}{\pi_3} = -0.312 - 0.021AGE \tag{4.2}$$

Therefore.

$$\pi_1 = \frac{\exp(-2.349 - 0.021AGE)}{1 + \exp(-2.349 - 0.021AGE)} \tag{4.3}$$

$$\pi_2 = \frac{\exp(-2.349 - 0.021AGE)}{1 + \exp(-2.349 - 0.021AGE)} - \pi_1 \tag{4.4}$$

$$\pi_3 = 1 - \pi_1 - \pi_2 \tag{4.5}$$

By using equations from 4.1 to 4.5, it is able to compute the probability that each settlement category may occur solely based on the independent variable AGE.

4.1.2 Sample Two

Had the dependent variable been continuous rather than ternary, a scatterplot of the SEVERITY versus the AGE was created for sample two to provide a descriptive impression of the nature and strength of any relationship between the outcome and the independent variable. The same as sample one, no clear relationship could be revealed by this scatterplot.

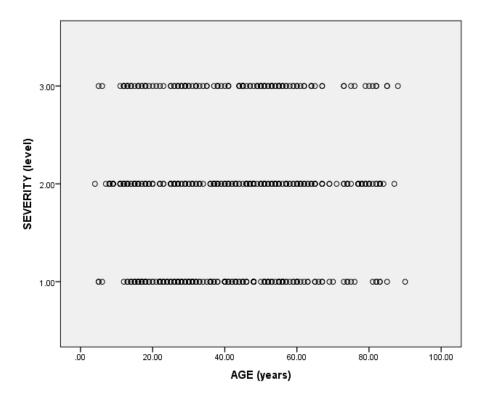


Figure 4.4 Sample Two: Scatterplot of approach settlement levels by approach age

Then the data in the sample two was divided into four age groups to obtain the relationship between the percentage of SEVERITY with minimal (severe) and AGE. The result is shown in Table 4.6. Figure 4.5 shows that the proportion of approaches with minimal settlement increases as approach age increases within 30 years, while the proportion of approaches with minimal settlement decreases as approach age increases after 30 years. Figure 4.6 shows that the proportion of approaches with severe settlement varies slightly among different age groups. The changing tendency of the percentage of approaches in sample two with minimal settlement shows a contradictory trend with the sample one.

Table 4.6 Sample Two: Frequency table of age group (AGEG) by SEVERITY

Age group		Severity		Total	Mean		
(year)	Minimal	Moderate	Moderate Severe		Minimal	Severe	
0~15	13	41	15	69	0.188	0.217	
16~30	65	49	31	145	0.448	0.214	
31~45	45	47	29	121	0.372	0.240	
Above 45	69	136	60	265	0.260	0.226	
	192	273	135	600			

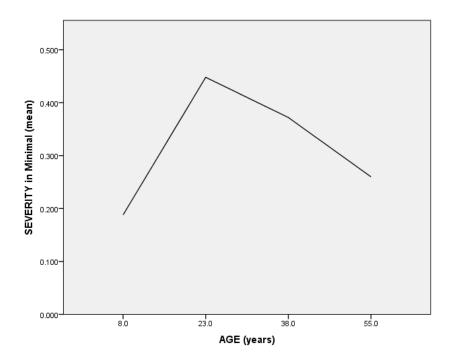


Figure 4.5 Sample One: Plot of the percentage of approaches with minimal SEVERITY in each age group

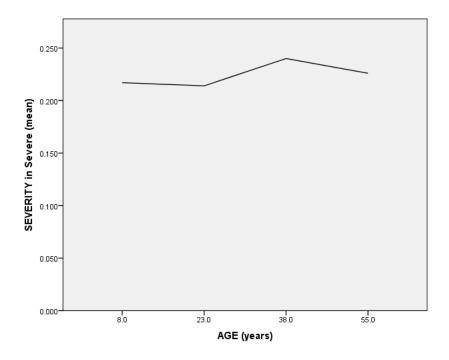


Figure 4.6 Sample Two: Plot of the percentage of approaches with severe SEVERITY in each age group

An ordinal regression was also carried out to obtain the functional relationship between the settlement severity and the approach age for sample two. The p-value (Sig.) from the output of model fitting information is larger than 0.05 and indicates that this model is not better than a null model without any predictors. For sample two, if an approach were to increase AGE by one year, the ordered log-odds of being in a higher SEVERITY category would increase by 0.006 while the other variables in the model are held constant. The Wald test statistic for the variable AGE is 2.221 with an associated p-value of 0.136. If the alpha level 0.05 is selected, the null hypothesis cannot be rejected. In other words, the approach age is not statistically significant associated with settlement levels. The analysis of test of parallel lines indicates that the proportional odds assumption is not violated and the method of ordinal regression for identifying the relationship between the settlement severity and the approach age is applicable. If the

proportional odds assumption was violated, a less restrictive model, such as the multinomial logistic regression, would be used. Since this model cannot fit the relationship between AGE and SEVERITY well for sample two, no equations would be given to describe their functional relationship.

Table 4.7 Sample Two: Model fitting information of ordinal logistic regression between AGE and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	496.710			
Final	494.397	2.313	1	.128

Note: Link function: Logit

Table 4.8 Sample Two: Parameter estimates of ordinal logistic regression between AGE and SEVERITY

							95% Confidence		
			Std. Estimate		df	Sig.	Interval		
		Error		Wald	G1	515.	Lower	Lower Upper Bound Bound868180	
							Bound	Bound	
	[SEVERITY	524	.176	8.910	1	.003	- 868	- 180	
Threshold	= 1.00]	<i>52</i> -	.170	0.710	1	.003	000	100	
	[SEVERITY	1.473	.186	62.806	1	.000	1.108	1.837	
	= 2.00]	1.4/3	.100	02.800	1	.000	1.100	1.037	
Location	AGE	.006	.004	2.221	1	.136	002	.013	

Table 4.9 Sample Two: Test of parallel lines of ordinal logistic regression between AGE and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	494.397			
General	492.923	1.474	1	.225
General	492.923	1.4/4	1	.223

Note: The null hypothesis states that the location parameters (slope coefficients) are the same across response categories.

4.1.3 Conclusions

The ordinal regression is applicable to explore the relationship between the settlement severity and the approach age. The result of sample one is not exactly the same with sample two. Sample one shows that AGE is statistically significant while sample two is not. Furthermore, the changing tendency of proportion (mean) of approaches with minimal settlement of the sample one is different with sample two. This divergence could be explained from several aspects: (1) two samples were based on different evaluation criterions of settlement severity with different sample size, (2) the outcome of the sample one was determined by local bridge engineers depending on their work experience that may be varied by person to person, and (3) the predictor variable AGE was classified as continuous variable for both ordinal logistic regressions, however, 55.3% of cells (i.e., dependent variable levels by observed combinations of predictor variable values) with zero frequencies for sample one, which may lead to unstable model for sample one.

Most types of logistic regression, using maximum likelihood estimates, require sufficient sample size. How big is big is a topic of some debate. But a check for empty or small cells by doing a crosstab between categorical independent variables and the outcome

variable is needed. If a cell has very few cases, the model may become unstable or it might not run at all. In this sense, the output of sample two has a higher reliability than model of sample one while the sample two concludes that AGE is not significantly associated with SEVERITY. A comprehensive analysis including all predictor variables is absolutely needed for both samples to obtain a more complete answer for the relationship between the settlement severity and the approach age.

4.2 Bridge Length and Width

No previous studies had listed bridge length or width as an important factor that may affect the bridge end settlement between the abutment and the roadway. This study collected the bridge length and width as the basic information as well as other important factors mentioned in other literatures. The variables LENGTH and WIDTH were treated the same as AGE. A descriptive relationship was depicted firstly, and then the changing tendency of proportion (mean) of approaches with minimal or severe settlement was illustrated. Finally, statistical package SPSS was used to obtain any functional relationship between the bridge length (width) and the settlement severity.

4.2.1 Sample One

Scatterplots of the outcome versus the bridge length and width are given in Figure 4.7 and Figure 4.8, respectively. The approaches with bridge length between 100 and 300 feet seem to have been experiencing a higher severity level compared to the approaches with bridge length longer than 400 feet. But no distinct relationship between the approach settlement and the bridge length (width) could be perceived sorely based on these scatterplots.

In order to further explore the relationship between LENGTH and SEVERITY, length group (LENGTHG) was created by dividing length into several groups shown in Table 4.10. Table 4.10 contains, for each length group, the frequency of occurrence of each settlement severity, as well as the presence of the percent with Minimal or Severe. Figure 4.9 presents a plot of the percent of approaches with minimal settlement versus the midpoint of each length interval. It shows that the approaches with bridge length between 300 and 400 feet have the highest proportion in minimal settlement while the approaches with bridge length between 200 and 300 feet have the lowest proportion in minimal settlement. Similarly, the percent of approaches with severe settlement versus the midpoint of each length interval is given in Figure 4.10. The highest proportion of approaches in severe settlement falls in the range between 0 and 100 feet, while the lowest proportion of approaches in severe settlement lies in the range between 100 and 200 feet.

Table 4.10 Sample One: Frequency table of length group (LENGTHG) by SEVERITY

Length		Severity			Mean		
group (feet)	Minimal	Moderate	Severe	Total	Minimal	Severe	
0~100	2	2	5	9	0.222	0.556	
101~200	2	8	5	15	0.133	0.333	
201~300	4	15	14	33	0.121	0.424	
301~400	4	5	7	16	0.250	0.438	
Above 400	2	6	6	14	0.143	0.429	
Total	14	36	37	87			

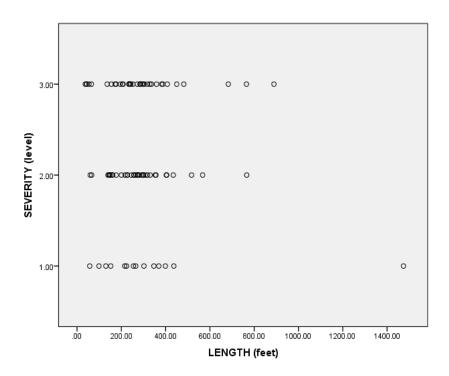


Figure 4.7 Sample One: Scatterplot of approach settlement levels by bridge length

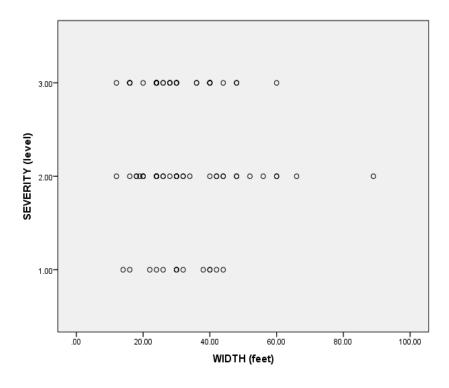


Figure 4.8 Sample One: Scatterplot of approach settlement levels by bridge width

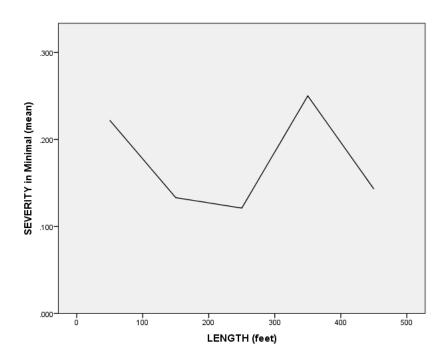


Figure 4.9 Sample One: Plot of the percentage of approaches with minimal SEVERITY in each length group

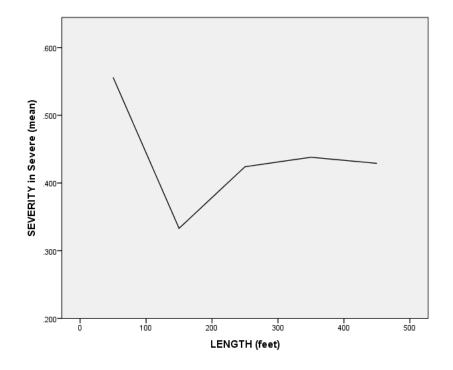


Figure 4.10 Sample One: Plot of the percentage of approaches with severe

SEVERITY in each length group

The frequency table of width group (WIDTHG) by SEVERITY is shown in Table 4.11. From Figure 4.11 and 4.12, it can be seen that both the proportions of approaches with minimal severity and severe severity increase as width increases before 40 feet and then decrease as width increases after 40 feet.

Table 4.11 Sample One: Frequency table of width group (WIDTHG) by SEVERITY

Width		Severity			Mean		
Group (feet)	Minimal	Moderate	Severe	Total	Minimal	Severe	
0~20	2	8	6	16	0.125	0.375	
21~40	10	16	27	53	0.189	0.509	
41~60	2	10	4	16	0.125	0.250	
Above 60	0	2	0	2	0	0	
Total	14	36	37	87			

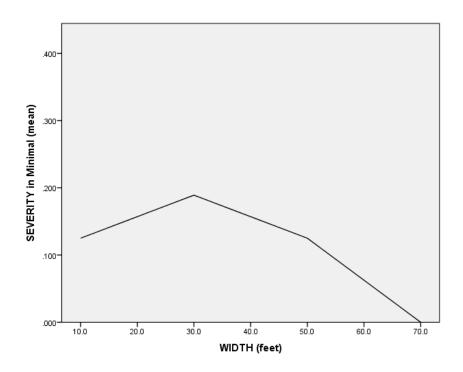


Figure 4.11 Sample One: Plot of the percentage of approaches with minimal SEVERITY in each width group

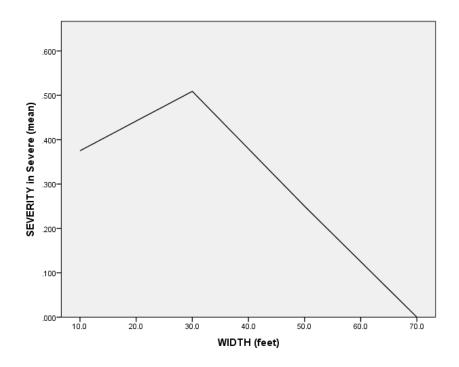


Figure 4.12 Sample One: Plot of the percentage of approaches with severe

SEVERITY in each width group

Then the ordinal regressions were conducted to identify the functional relationship between the bridge length (width) and the settlement severity. The results are shown in Table 4.12 ~ Table 4.17. The p-value for the model of the relationship between LENGTH and SEVERITY is 0.630, which implies that this model is not better than a null model without any predictors and cannot fit the relationship well. The LENGTH is not statistically significant related with SEVERITY as the regression coefficient of length is 0.597. Likewise, the relationship between WIDTH and SEVERITY is also not statistically significant due to a high p-value 0.396. By examining the output of test of parallel lines for both the relationships between LENGTH and SEVERITY and between WIDTH and SEVERITY, the method of ordinal regression is applicable because the null hypothesis states that the slope coefficients in the model are the same across response categories cannot be rejected. Because these two models can not reflect the relationships in this section very well, the expressions of these two models in equations are not given here.

Table 4.12 Sample One: Model fitting information of ordinal logistic regression between LENGTH and SEVERITY

	-2 Log			
Model	Likelihood	Chi-Square	df	Sig.
Intercept Only	173.194			
Final	173.563	0.231	1	.630

Table 4.13 Sample One: Parameter estimates of ordinal logistic regression between Length and SEVERITY

		Estimate	Std.	Wald	df	Sig.	95% Confide	ence Interval
		Error				J	Lower Bound Upper Boun	
Threshold	[SEVERITY = 1.00]	-1.807	.420	18.461	1	.000	-2.631	983
	[SEVERITY = 2.00]	.150	.362	.173	1	.678	558	.859
Location	LENGTH	001	.001	.280	1	.597	002	.001

Table 4.14 Sample One: Test of parallel lines of ordinal logistic regression between LENGTH and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	173.563			
General	172.842	.721	1	.396

Table 4.15 Sample One: Model fitting information of ordinal logistic regression between WIDTH and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	90.944			
Final	90.329	.615	1	.433

Table 4.16 Sample One: Parameter estimates of ordinal logistic regression between WIDTH and SEVERITY

			Std.				95% Confide	ence Interval
		Estimate		Wald	df	Sig.		
			Error				Lower Bound	Upper Bound
	[SEVERITY							
		-2.021	.579	12.199	1	.000	-3.155	877
	= 1.00]							
Threshold								
	[SEVERITY							
		057	.517	.012	1	.913	-1.091	.976
	= 2.00]							
Location	WIDTH	011	.015	.534	1	.465	041	0.019

Table 4.17 Sample One: Test of parallel lines of ordinal logistic regression between WIDTH and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	90.329			
General	88.596	1.733	1	.188

4.2.2 Sample Two

The analysis process for sample one was iterated in this section to analyze the relationship between the bridge length (width) and the settlement severity for sample two. The proportion of approaches with minimal settlement versus the midpoint of each length interval of sample two shows similar changing trend with sample one: the proportion of severity in minimal increases as the length increases at first, then decreases as the length increases in the middle, and then increases as the length increases after 400 feet. While the proportion of approaches with severe settlement changes within a small degree as the length varies.

The percentage of approaches with minimal SEVERITY in each width group of sample two increases as the bridge width increases if the bridge width less than 20 feet, and then decreases if the bridge width continues to increase. This changing trend is also similar with sample one.

Table 4.18 Sample Two: Frequency table of length group (LENGTHG) by SEVERITY

Length	Severity			Mean		
group (feet)	Minimal	Moderate	Severe	Total	Minimal	Severe
0~100	69	59	32	160	0.431	0.200
101~200	54	100	41	195	0.277	0.210
201~300	39	61	32	132	0.295	0.242
301~400	12	23	20	55	0.218	0.364
Above 400	18	30	10	58	0.310	0.172
	192	273	135	600		

Table 4.19 Sample Two: Frequency table of width group (WIDTHG) by SEVERITY

Width		Severity			Mean		
Group (feet)	Minimal	Moderate	Severe	Total	Minimal	Severe	
0~20	11	24	13	48	0.229	0.271	
21~40	141	177	86	404	0.349	0.213	
41~60	30	41	19	90	0.333	0.211	
Above 60	10	31	17	58	0.172	0.293	
Total	192	273	135	600			

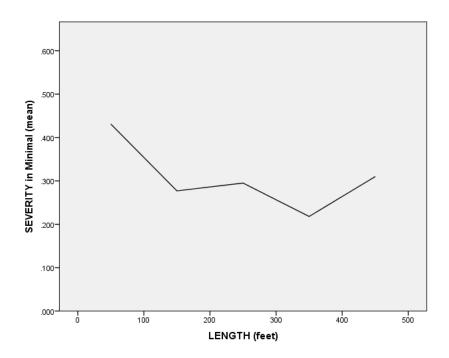


Figure 4.13 Sample Two: Plot of the percentage of approaches with minimal SEVERITY in each length group

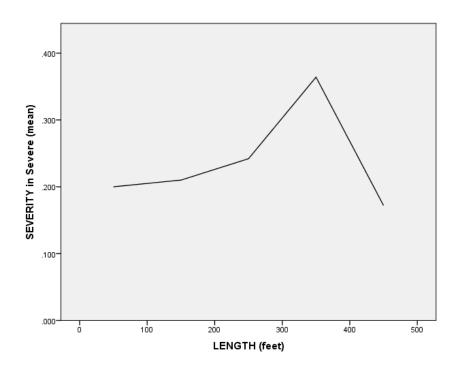


Figure 4.14 Sample Two: Plot of the percentage of approaches with severe SEVERITY in each length group

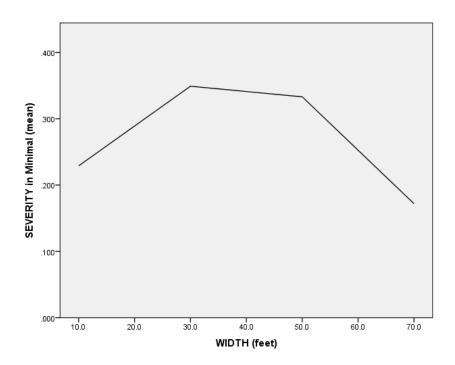


Figure 4.15 Sample Two: Plot of the percentage of approaches with minimal SEVERITY in each width group

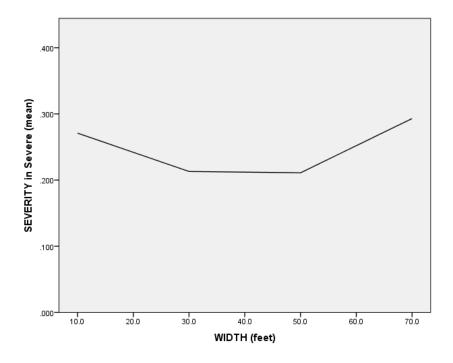


Figure 4.16 Sample Two: Plot of the percentage of approaches with severe SEVERITY in each width group

The following is the output from the statistical package SPSS. Table 4.20 shows that the model between LENGTH and SEVERITY is not statistically significant and cannot reflect the relationship well. However, the p-value of the model between WIDTH and SEVERITY is 0.02 that is smaller than 0.05, which indicates this model can fit the relationship between the bridge with and the settlement severity well. The regression coefficient 0.003 reveals that there is an association between WIDTH and SEVERITY for sample two. This relationship can be expressed in the following equations:

$$Logit \frac{\pi_1}{1 - \pi_1} = Logit \frac{\pi_1}{\pi_2 + \pi_3} = -0.355 + 0.011WIDTH \tag{4.6}$$

$$Logit \frac{\pi_1 + \pi_2}{1 - (\pi_1 + \pi_2)} = Logit \frac{\pi_1 + \pi_2}{\pi_3} = 1.661 + 0.011WIDTH$$
 (4.7)

The probability relationship between different settlement levels are shown in equation 4.3, 4.4, and 4.5. By combining the equations 4.6 and 4.7, the probability that each settlement category may occur could be computed.

Table 4.20 Sample Two: Model fitting information of ordinal logistic regression between LENGTH and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	893.936			
Final	891.874	2.061	1	.151

Table 4.21 Sample Two: Parameter estimates of ordinal logistic regression between LENGTH and SEVERITY

							95% Co	nfidence
		Estimate	Std. Wald		Wald df	f Sig.	Interval	
			Error				Lower	Upper
							Bound	Bound
	[SEVERITY	660	.111	35.107	1	.000	878	442
Threshold	= 1.00]							
	[SEVERITY	1.336	.123	118.743	1	.000	1.096	1.577
	= 2.00]							
Location	LENGTH	.000	.000	1.760	1	.185	.000	.001

Table 4.22 Sample Two: Test of parallel lines of ordinal logistic regression between LENGTH and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	891.874			
General	888.733	3.141	1	.076

Table 4.23 Sample Two: Model fitting information of ordinal logistic regression between WIDTH and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	343.809			
Final	334.022	9.787	1	.002

Table 4.24 Sample Two: Parameter estimates of ordinal logistic regression between WIDTH and SEVERITY

							95% Co	nfidence
		Estimate	Std.	Wald	df	Sig.	Interval	
			Error	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6 12	~15.	Lower	Upper
							Bound	Bound
	[SEVERITY	355	.157	5.135	1	.023	662	048
Threshold	= 1.00]	.555	.137	3.133	1	.023	.002	.010
Tinesitora	[SEVERITY	1.661	.172	93.352	1	.000	1.324	1.998
	= 2.00]	1.001	.1/2	73.332	1	.000	1.324	1.770
Location	WIDTH	.011	.004	9.025	1	.003	.004	.018

Table 4.25 Sample Two: Test of parallel lines of ordinal logistic regression between WIDTH and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	334.022			
General	331.729	2.293	1	.130

4.2.3 Conclusions

The ordinal regression results show that there is not significant relationship between the bridge length and the settlement severity both for sample one and sample two. The SPSS output shows that there is an association between WIDTH and SEVERITY for sample two, while no relationship exists for sample one. The statistical model of sample one cannot reflect the relationship between the bridge width and the settlement severity very well due to a little bit high model p-value 0.151>0.05. But a significant relationship between WIDTH and SEVERITY is found if a sample has sufficient data. The functional relationship for sample two shows that for one unit increase in WIDTH, a 0.011 increase in the ordered log odds of being in a higher settlement level given all of the other variables in the model are held constant. This conclusion should be compare to the comprehensive model which is illustrated in the last section of this chapter.

4.3 Average Daily Traffic

The opinion on the relationship between the traffic volume and approach settlement is debatable. High volume traffic has been found to be a compelling reason for the formation of approach settlement (Wong and Small, 1994). On the one hand, Lenke (2006) concluded that bump severity was found to increase with vehicle velocity, vehicle weight, especially heavy truck traffic, and ADT. On the other hand, Bakeer (2005) noted that speed limit and traffic volume almost have no effect on the performance of bridge approaches. The relationship between ADT and Severity would be identified in this section.

4.3.1 Sample One

It is not appropriate to process ADT as AGE because the variability in ADT is very considerable from several decades to hundreds of thousands. Therefore, no scatterplots or proportion changing tendency of approaches with different levels in different ADT were described here. The output from SPSS was used for inference the relationship between ADT and SEVERITY.

Table 4.26 Sample One: Model fitting information of ordinal logistic regression between ADT and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	170.786			
Final	170.221	.565	1	.452

Table 4.27 Sample One: Parameter estimates of ordinal logistic regression between

ADT and SEVERITY

		Estimate	Std.	Wald	df	Sig.	95% Confidence Interval	
			Error				Lower Bound	Upper Bound
Threshold	[SEVERITY = 1.00]	-1.764	.333	28.060	1	.000	-2.417	-1.111
	[SEVERITY = 2.00]	199	.258	.591	1	.442	-0.308	.705
Location	ADT	0.000	.000	.446	1	.504	-3.829E-5	1.833E-5

Table 4.28 Sample One: Test of parallel lines of ordinal logistic regression between

ADT and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	170.221			
General	167.055	.3.166	1	.075

Table 4.26 shows that the p-value of the model 0.452 lead to conclude that this model is not different with a null model. The regression coefficient for ADT is 0.504, which indicates ADT is not significantly related with SEVERITY. From Table 4.28, the null hypothesis that the slope coefficients in the model are the same across response

categories is violated if an alpha value 0.05 is specified. A less restrictive model (multinomial logistic regression) was used to verify the output from ordinal regression.

Table 4.29 Sample One: Model fitting information of multinomial logistic regression between ADT and SEVERITY

Model	Model Fitting Criteria	Likelihood Ratio Tests			
	-2 Log Likelihood	Chi-Square	df	Sig.	
Intercept Only	170.786				
Final	166.511	4.275	2	.118	

Table 4.30 Sample One: Parameter estimates of multinomial logistic regression between ADT and SEVERITY

SEVERITY							95% Confidence		
	ERITY	В	Std.	Wald	df	Sig.	Exp(B)	Interval for Exp(B)	
			Error					Lower	Upper
								Bound	Bound
1.00	Intercept	970	.404	5.764	1	.016			
	ADT	.000	.000	.000	1	.996	1.000	1.000	1.000
2.00	Intercept	373	.305	1.500	1	.221			
	ADT	.000	.000	2.706	1	.100	1.000	1.000	1.000

Note: The reference category is 3.00

- B: These are the estimated multinomial logistic regression coefficients for the models. An important feature of the multinomial logit model is that it estimates k-1 models, where k is the number of levels of the outcome variable. In this instance, SPSS is treating the Severe as the referent group and therefore estimated a model for Minimal relative to Severe and a model for Moderate relative to Severe.
- Exp (B): These are the odds ratios for the predictors. They are the exponentiation of the coefficients. The odds ratio of a coefficient indicates how the risk of the outcome falling in the comparison group compared to the risk of the outcome falling in the referent group changes with the variable in question. An odds ratio > 1 indicates that the risk of the outcome falling in the comparison group relative to the risk of the outcome falling in the referent group increases as the variable increases. In other words, the comparison outcome is more likely to occur. An odds ratio < 1 indicates that the risk of the outcome falling in the referent group decreases as the variable increases

Therefore, since the parameter estimates are relative to the referent group, the standard interpretation of the multinomial logistic regression is that for a unit change in the predictor variable, the logit of outcome SEVERITY relative to the referent group is expected to change by its respective parameter estimate (which is in log-odds units) given the variables in the model are held constant. In this model, (1) Minimal relative to Severe: for a one unit increase in ADT for Minimal relative to Severe given the other variables in the model are held constant, the multinomial log-odds of becoming Minimal

to Severe would be expected to be unchanged; (2) Moderate relative to Severe: for a one unit increase in ADT for moderate relative to Severe given the other variables in the model are held constant, the multinomial log-odds of becoming Moderate to Severe would be expected to be unchanged.

For Minimal relative to Severe, the Wald test statistic for the predictor ADT is 0 with an associated p-value of 0.996. Therefore, it would fail to reject the null hypothesis and conclude that for Minimal relative to Severe, the regression coefficient for ADT has not been found to be statistically different from zero. The same conclusions would be expected for Moderate relative to Severe.

Both ordinal and multinomial logistic regression show that there is no significant association between ADT and SEVERITY. But this conclusion should be verified by creating a comprehensive model considering all other predictors.

4.3.2 Sample Two

An ordinal regression was carried out at first and the output is shown in Table 4.31 ~ Table 4.33. Even though the model from the ordinal regression seems to fit the relationship well, the test of parallel lines shows that the null hypothesis that the slope coefficients in the model are the same across response categories is violated. Multinomial logistic regression was conducted as another analysis to compare with ordinal regression, and the results are shown in Table 4.34 and Table 4.35.

Table 4.31 Sample Two: Model fitting information of ordinal logistic regression between ADT and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	1234.091			
Final	1192.759	41.332	1	.000

Table 4.32 Sample Two: Parameter estimates of ordinal logistic regression between ADT and SEVERITY

							95% Co	nfidence
			Std. Estimate	Wald	df	Sig.	Inte	rval
		Estimate	Error	waiu	uı	Sig.	Lower	Upper
							Bound	Bound
	[SEVERITY	520	.096	29.317	1	.000	709	332
	= 1.00]	320	.090	29.317	1	.000	709	332
Threshold								
	[SEVERITY	1.572	.116	183.621	1	.000	1.344	1.799
	= 2.00]	1.372	.110	103.021	1	.000	1.544	1.///
		3.322E-	6.180E-					
Location	ADT	5	6	28.903	1	.000	2.111E-5	4.534E-5
		3	U					

Table 4.33 Sample Two: Test of parallel lines of ordinal logistic regression between ADT and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	1192.759			
General	1185.952	6.807	1	.009

Table 4.34 Sample Two: Model fitting information of multinomial logistic regression between ADT and SEVERITY

	Model Fitting Criteria			Likelihood Ratio Tests		
Model	AIC	BIC	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	1238.091	1246.885	1234.091			
Final	1194.964	1212.552	1186.964	47.127	2	.000

• AIC: This is the Akaike information criterion.

• BIC: This is the Bayesian information criterion.

Table 4.35 Sample Two: Parameter estimates of multinomial logistic regression between ADT and SEVERITY

SEV	'ERITY	В	Std.	Wald	df	Sig.	Exp(B)	95% Co. Interval for	
			Error					Lower	Upper
								Bound	Bound
1.00	Intercept	.852	.141	36.785	1	.000			
	ADT	.000	.000	24.038	1	.000	1.000	1.000	1.000
2.00	Intercept	.905	.123	54.330	1	.000			
	ADT	.000	.000	10.356	1	.001	1.000	1.000	1.000

Note: The reference category is 3.

Table 4.36 Sample Two: Classification table of multinomial logistic regression between ADT and SEVERITY

	Predicted					
Observed	1.00	2.00	3.00	Percent Correct		
1.00	0	191	1	0.0%		
2.00	0	267	6	97.8%		
3.00	0	122	13	9.6%		
Overall Percentage	0.0%	96.7%	3.3%	46.7%		

Table 4.36 indicates this multinomial logit model is statistically significant and fits the relationship well. For Minimal relative to Severe, the Wald test statistic for the predictor ADT is 24.038 with an associated p-value of 0.0001. Therefore, the null hypothesis would be rejected and conclude that for Minimal relative to Severe, the regression coefficient for ADT has been found to be statistically different from zero. The same conclusions would be expected for Moderate relative to Severe.

4.3.3 Conclusions

The test of parallel lines of ordinal logistic regression between ADT and SEVERITY has shown that the null regression that the slope coefficients in the model are the same across response categories is violated both for sample one and sample two. Method of multinomial logistic regression was used to obtain the relationship between ADT and SEVERITY. The analysis for sample one shows the model cannot reflect the relationship between ADT and SEVERITY with an associated model p-value around 0.1. While the analysis for sample two demonstrates that ADT is statistically significant for the model. The table of parameter estimates for sample two shows that a 0.00003 increase in the ordered log odds of being in a higher level of settlement for a one unit increase in ADT, which means the higher of settlement level may occur as the ADT is larger.

The biggest difference between these two samples are data size. Therefore, this study believes that there is an association between ADT and SEVERITY given sufficient sample size. This conclusion should be compared to the conclusions from the comprehensive model taking all other predictors into account. Table 4.36 gives the classification table of multinomial logistic regression between ADT and SEVERITY. The

overall (correct) percentage of predicting the settlement levels sorely based on ADT is 46.7%, which is not an ideal predicted accuracy in engineering area.

4.4 Approach Type

Many researchers, Ha et al. (2002), Luna et al. (2003), White et al. (2005), Puppla et al. (2009), applied approach slabs on selected sites to connect roadway and bridges and practiced the bump problems at bridge ends that could be minimized when an approach slab is used. Investigations from Dopont and Allen (2002) and Briaud et al. (1997) have illustrated that approach slabs are widely perceived as successful when they are designed longer to span the problematic area and stronger to prevent cracking as well as the fact that good pavement joints lead into them. However, these conclusions were derived from a specific survey or field tests, no systematic statistical method has been used to verify the good performance of approach slabs in solving bump issues.

Concerning fewer approach slabs are used in Kentucky, this section intends to verify whether approach slabs are useful or not on mitigating bump problem based on the performance of approach slabs that have been constructed in Kentucky.

4.4.1 Sample One

Table 4.37 presents the statistics of sample one that was used to explore the relationship between approach type and differential settlement scale. A mosaic plot (Figure 4.17) was created to explore the distribution of a categorical (nominal or ordinal) variable SEVERITY across the levels of a second categorical variable APPT. A mosaic plot is divided into rectangles, so that the area of each rectangle is proportional to the

populations of the Y variable in each level of the x variable. The larger the rectangle area, the greater number of count data in it. Note the following about Figure 4.17:

- The proportions on the x-axis represent the number of observations for each level of the x variable, which is approach type (APPT).
- The proportions on the y-axis at right represent the overall proportions of Minimal, Moderate, and Severe settlements for the combined levels (All different approach types).
- The scale of the y-axis at left show the response probability, with the whole axis being a probability of one (representing the total sample).

The mosaic plot shows that the bridges with rigid approaches both have higher proportions of minimal settlement and severe settlement than the bridges with flexible approaches. While the bridges with flexible approaches have a higher proportion of moderate settlement.

Table 4.37 Sample One: Frequency table of approach type (APPT) by SEVERITY

Approach		Severity				
Type	Minimal	Total				
Flexible (0)	11	31	28	70		
Rigid (1)	3	5	9	17		
Total	14	36	37	87		

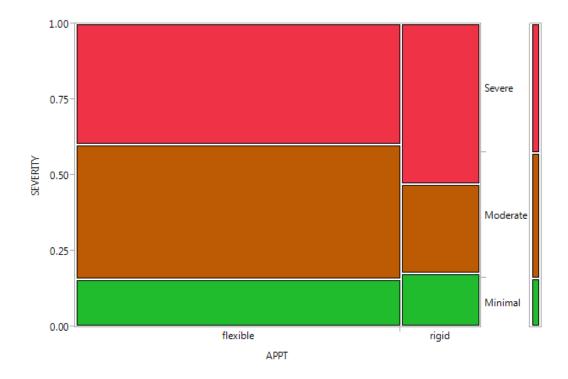


Figure 4.17 Sample One: Distribution of settlement levels across approach type

A model was attempted to be created to describe the relationship between APPT and SVERITY by SPSS, and the output is shown in Table 4.38 ~ Table 4.40. The results indicate that this model cannot fit the relationship well and there is no direct association between APPT and SEVERITY based on the regression coefficients of APPT for SEVERITY.

Table 4.38 Sample One: Model fitting information of ordinal logistic regression between APPT and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	15.796			
Final	15.309	.487	1	.485

Table 4.39 Sample One: Parameter estimates of ordinal logistic regression between APPT and SEVERITY

			Std.	Wald	df	Sig.	95% Cor Inte	nfidence rval
		Estimate	Error				Lower Bound	Upper Bound
Threshold	[SEVERITY = 1.00]	-1.957	.520	14.190	1	.000	-2.976	939
	[SEVERITY = 2.00]	.003	.468	.000	1	.995	913	.919
Location	[APPT=.00]	367	.516	.505	1	.477	-1.378	.645
	[APPT=1.00]	Oª			0	•	٠	

a. This parameter is set to zero because it is redundant.

Table 4.40 Sample One: Test of parallel lines of ordinal logistic regression between

APPT and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	15.309			
General	14.461	.848	1	.357

Another method used to assess whether two categorical variables, APPT and SEVERITY, are independent or not is Chi-square test. The test procedure is appropriate when the following conditions are met:

- 1. The sampling method is simple random sampling.
- 2. The variables under study are each categorical.
- 3. If sample data are displayed in a contingency table, the expected frequency count for each cell of the table is at least 5.

Sample one was created from a survey and cannot meet the condition 1. From contingency table 4.37, several cells have a small frequency count. Therefore, Chi-square test is not appropriate for sample one.

4.4.2 Sample Two

A descriptive analysis was conducted by creating a frequency table of approach type by settlement levels and a mosaic plot of distribution of settlement levels across approach type. The mosaic plot reveals that the bridges with rigid approach tend to experience minimal settlement and have the lowest proportion of severe settlement. A measure to further explore the functional relationship between APPT and SEVERITY was analyzed by ordinal logistic regression in SPSS.

Table 4.41 Sample Two: Frequency table of approach type (APPT) by SEVERITY

Approach		Severity				
Туре	Minimal	Moderate	Severe	Total		
Flexible (0)	134	218	115	467		
Rigid (1)	58	55	20	133		
Total	192	273	135	600		

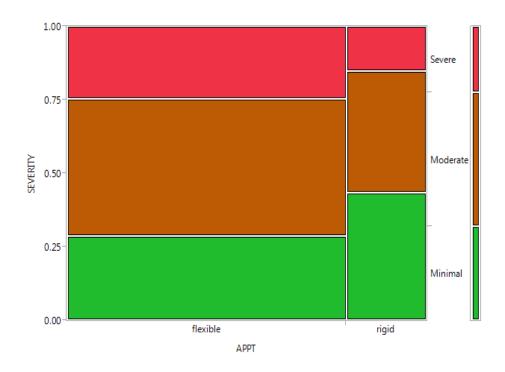


Figure 4.18 Sample Two: Distribution of settlement levels across approach type

Table 4.42 Sample Two: Model fitting information of ordinal logistic regression between APPT and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	34.402			
Final	22.444	11.957	1	.001

Table 4.43 Sample Two: Parameter estimates of ordinal logistic regression between APPT and SEVERITY

			Std.	Wald	df	Sig.	95% Cor Inte	
			Error				Lower Bound	Upper Bound
Threshold	[SEVERITY = 1.00]	265	.166	2.558	1	.110	591	.060
	[SEVERITY = 2.00]	1.756	.182	93.134	1	.000	1.399	2.113
Location	[APPT=.00]	.641	.186	11.835	1	.001	.276	1.007
	[APPT=1.00]	O ^a	•		0	•	٠	·

a. This parameter is set to zero because it is redundant

Table 4.44 Sample Two: Test of parallel lines of ordinal logistic regression between APPT and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	22.444			
General	22.422	.022	1	.881

This model can fit the relationship between APPT and SEVERITY well with a model p-value 0.001. The table of parameter estimates show the Wald test statistic for the predictor APPT is 11.835 with an associated p-value of 0.001. The null hypothesis that

the regression coefficient of APPT is zero given that the rest of the predictors are in the model (only one predictor in this model) would be rejected. In other words, APPT is statistically significant to this model and a relationship exists between APPT and SEVERITY.

To further verify there is a significant association between APPT and SEVERITY, Chisquare test has been undertaken. This method consists of four steps: (1) state the hypothesis, (2) formulate an analysis plan, (3) analyze sample data, and (4) interpret results.

1. State the hypothesis

The null hypothesis states that knowing the level of approach type is not helpful to predict the level of settlement severity. That is, the two categorical variables are independent.

 H_0 : Approach type and settlement severity are independent H_a : Approach type and settlment severity are not independent The alternative hypothesis is that knowing the approach type is helpful to predict the level of settlement severity. However, support for the alternative hypothesis suggests that APPT and SEVERITY are related, the relationship is not necessarily causal. In the sense that APPT "causes" the other.

2. Formulate an analysis plan

A significance level of 0.05 is specified and Chi-square test is used to examine whether these two variables are independent or not.

3. Analyze sample data

Using sample data, calculate the degrees of freedom, expected frequencies, test statistic, and the P-value associated with the test statistic.

Degrees of freedom: The degrees of freedom (DF) is equal to:

$$DF = (r-1) * (c-1)$$
(4.8)

where r is the number of levels for one categorical variable, and c is the number of levels for the other categorical variable. In this case, DF is equal to 2. Expected frequencies: The expected frequency counts are computed separately for each level of one categorical variable at each level of the other categorical variable. Compute r * c expected frequencies by using the following equation.

$$E_{r,c} = (n_r * n_c)/n (4.9)$$

where $E_{r,c}$ is the expected frequency count for level of r of APPT and level c of SEVERITY, n_r is the total number of sample observations at level r of APPT, n_c is the total number of sample observations at level c of SEVERITY, and n is the total sample size. Table 4.45 shows the observed frequencies and expected frequencies.

Table 4.45 Sample Two: APPT VS. SEVERITY cross tabulation

SEVERITY						Total	
				Moderate	Severe	Total	
	Flexible	Count	134	218	115	467	
APPT	Tiexioie	Expected Count	149.4	212.5	105.1	467.0	
	Rigid	Count	58	55	20	133	
	111514	Expected Count	42.6	60.5	29.9	133.0	
Total		Count	192	273	135	600	
		Expected Count	192.0	273.0	135.0	600.0	

Test statistic: The test statistic is a Chi-square random variable (x^2) defined by the following equation.

$$X^{2} = \sum \left[(O_{r,c} - E_{r,c})^{2} / E_{r,c} \right]$$
 (4.10)

where $O_{r,c}$ is the observed frequency count at level r of APPT and level c of SEVERITY. The test statistic in this case is 12.01. The p-value is the probability that a Chi-square statistic having two degrees of freedom is more extreme than 12.01. By using the Chi-square Distribution Calculator to find $P(x^2 > 12.01) = 0.002$.

P-value: The P-value is the probability of observing a sample statistic as extreme as the test statistic. Table 4.46 presents the result of Chi-square test using SPSS, which is the same with the result calculated by using Chi-square Distribution Calculator.

Table 4.46 Sample Two: Chi-square test for APPT VS. SEVERITY

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	12.072	2	.002
Likelihood Ratio	11.980	2	.003
Linear-by-Linear Association	11.577	1	.001
N of Valid Cases	600		

4. Interpret results

Since the p-value (0.002) is much smaller than the significance level (0.05), we cannot accept the null hypothesis. Thus, 99.8% probability to conclude that there is a correlation between APPT and SEVERITY.

The Chi-square test has verified there is a significant relationship between approach type and settlement severity, however, a positive or negative impact is not specified, even with its effectiveness magnitude. A rating system as illustrated in Table 4.47 is defined to quantify the effectiveness of rigid approach on mitigating differential settlement. Grade 3, 2, and 1 would be assigned to settlement level minimal, moderate, and severe, respectively.

Table 4.47 Sample Two: Rating system to quantify approach effectiveness

Settlement Scale	Grade	Effective Ratio	Impact
Minimal	2	1	No impact
Moderate	1	<1	Negative
Severe	0	>1	Positive

An effective ratio (ER) is defined as:

ER

$$= \frac{\textit{Total grade of rigid approaches in different settlement level}}{\textit{Total grade of flexible approaches in different settlement level}} / \underbrace{\textit{Count of rigid approaches in different settlement level}}_{\textit{Count of flexible approaches in different settlement level}} / \underbrace{\textit{Count of flexible approaches in different settlement level}}_{\textit{Count of flexible approaches in different settlement level}} / \underbrace{\textit{Count of flexible approaches in different settlement level}}_{\textit{Count of flexible approaches in different settlement level}} / \underbrace{\textit{Count of flexible approaches in different settlement level}}_{\textit{Count of flexible approaches in different settlement level}} / \underbrace{\textit{Count of flexible approaches in different settlement level}}_{\textit{Count of flexible approaches in different settlement level}} / \underbrace{\textit{Count of flexible approaches in different settlement level}}_{\textit{Count of flexible approaches in different settlement level}} / \underbrace{\textit{Count of flexible approaches in different settlement level}}_{\textit{Count of flexible approaches in different settlement level}} / \underbrace{\textit{Count of flexible approaches in different settlement level}}_{\textit{Count of flexible approaches in different settlement level}} / \underbrace{\textit{Count of flexible approaches in different settlement level}}_{\textit{Count of flexible approaches in different settlement level}} / \underbrace{\textit{Count of flexible approaches in different settlement level}}_{\textit{Count of flexible approaches in different settlement level}} / \underbrace{\textit{Count of flexible approaches in different settlement level}}_{\textit{Count of flexible approaches in different settlement level}} / \underbrace{\textit{Count of flexible approaches in different settlement level}}_{\textit{Count of flexible approaches in different settlement level}} / \underbrace{\textit{Count of flexible approaches in different settlement level}}_{\textit{Count of flexible approaches in different settlement level}} / \underbrace{\textit{Count of flexible approaches in different settlement level}}_{\textit{Count of flexible approaches in different settlement level}} / \underbrace{\textit{Count of flexible approaches in different settlement level}}_{\textit{Coun$$

By this method, it is appropriate to conclude the approach slab would generate a positive impact on mitigating differential settlement when ER is larger than 1, otherwise, a negative impact would take place when ER is less than 1, or no impact of approach slab use when ER equals 1. The ER of the sample two is equal to 1.24. Thus, the use of approach slab has a positive effect on mitigating the problem caused by differential settlement. In other words, the use of approach slabs could enhance the performance of approaches as transitions between roadway and the bridge. However, the effectiveness is not significant because the ER is slightly larger than 1.

Table 4.48 Sample Two: Grade distribution for approach type in different settlement severity

Category		Flexible			Rigid	
SEVERITY	Minimal	Moderate	Severe	Minimal	Moderate	Severe
Count	134	218	115	58	55	20
Grade	268	218	0	116	55	0

4.4.3 Conclusions

The mosaic plots of sample one and sample two both show that the bridges with rigid approaches tend to present a higher proportion in minimal settlement than flexible approaches. The ordinal regression of sample one shows that there is no association between APPT and SEVERITY. While, the SPSS output of sample two indicates that APPT is statistically significant in the relationship between APPT and SEVERITY. The ordered logit for flexible approaches being in a higher settlement level is 0.641 more than rigid approaches when the other variable in the models are held constant (only one predictor for this model). In other words, the regression output of sample two indicates that rigid approaches behave better than flexible approaches in the treatment of the differential settlement at bridge ends. The results of Chi-square test for sample two verify the conclusion that there is a significant association between APPT and SEVERITY. An effective ration was defined to illustrate the impact of approach slabs on mitigating differential settlement. The result indicates that the use of approach slab has a positive effect on mitigating the problem caused by differential settlement at bridge ends.

4.5 Abutment Type

4.5.1 Sample One

A descriptive analysis was conducted by creating a frequency table of abutment type by settlement levels and a mosaic plot of distribution of settlement levels across abutment type. The mosaic plot reveals that the bridges with perched abutments have the highest proportion of minimal settlement compared to other abutment types. A measure to further explore the relationship between ABUT and SEVERITY was analyzed by ordinal logistic regression in SPSS. The output shows that the model cannot fit the relationship between ABUT and SEVERITY well and concludes that ABUT and SEVERITY are two independent variables (no association between ABUT and SEVERITY).

Table 4.49 Sample One: Frequency table of abutment type (ABUT) by SEVERITY

Abutment Type		Total		
Troument Type	Minimal	Moderate	Severe	Total
Closed (1)	3	7	8	18
Spill-through (2)	0	6	4	10
Perched (3)	11	23	25	59
Total	14	36	37	87

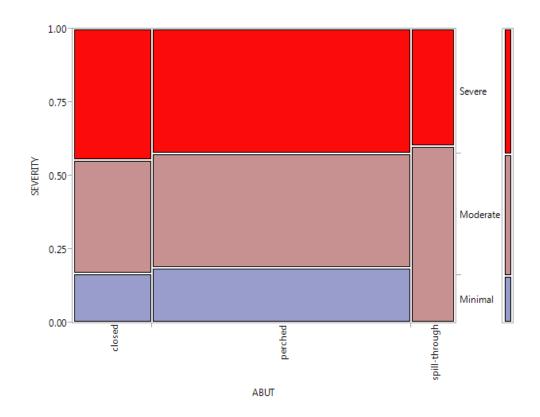


Figure 4.19 Sample One: Distribution of settlement levels across abutment type

Table 4.50 Sample One: Model fitting information of ordinal logistic regression between ABUT and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	21.469			
Final	21.247	.222	2	.895

Table 4.51 Sample One: Parameter estimates of ordinal logistic regression between ABUT and SEVERITY

		Estimate Error		Wald	df Sig.	95% Confidence Interval		
			Error				Lower Bound	Upper Bound
Threshold	[SEVERITY = 1.00]	-1.596	.320	24.912	1	.000	-2.223	969
	[SEVERITY = 2.00]	.360	.259	1.936	1	.164	147	.867
	[ABUT=1.00]	.104	.507	.042	1	.838	890	1.097
Location	[ABUT=2.00]	.279	.650	.184	1	.668	994	1.552
	[ABUT=3.00]	O ^a	•		0	•		

a. This parameter is set to zero because it is redundant.

Table 4.52 Sample One: Test of parallel lines of ordinal logistic regression between ABUT and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	21.247			
General	17.143	4.104	2	.128

4.5.2 Sample Two

Table 4.53 shows the frequency table of abutment type by severity levels for sample two. Figure 4.20 presents a mosaic plot illustrating the distribution of SEVERITY across ABUT. It shows that the bridges with perched abutments have the highest proportion of minimal settlement.

Table 4.53 Sample Two: Frequency table of abutment type (ABUT) by SEVERITY

Abutment Type		Total		
riodinent Type	Minimal	Moderate	Severe	Total
Closed (1)	44	69	38	151
Spill-through (2)	10	42	20	72
Perched (3)	138	162	77	377
Total	192	273	135	600

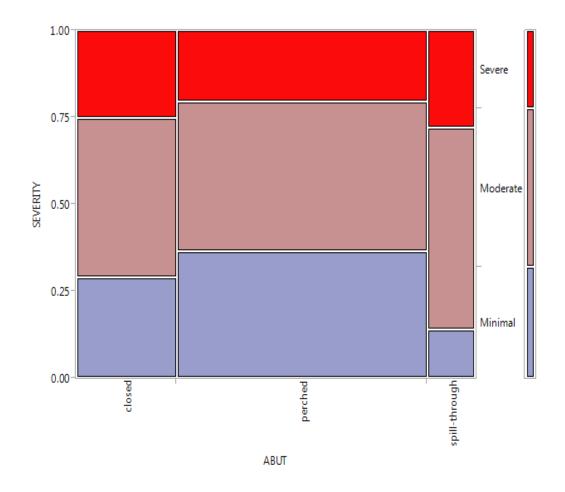


Figure 4.20 Sample Two: Distribution of settlement levels across abutment type

Table 4.54 Sample Two: Model fitting information of ordinal logistic regression between ABUT and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	48.028			
Final	36.593	11.435	2	.003

Table 4.55 Sample Two: Parameter estimates of ordinal logistic regression between ABUT and SEVERITY

		Std. Estimate	Wald	df	Sig.	95% Confidence Interval		
			Error				Lower Bound	Upper Bound
Threshold	[SEVERITY = 1.00]	589	.103	32.456	1	.000	792	386
	[SEVERITY = 2.00]	1.433	.119	145.761	1	.000	1.200	1.665
	[ABUT=1.00]	.320	.180	3.139	1	.076	034	.673
	[ABUT=2.00]	.749	.242	9.572	1	.002	.275	1.224
	[ABUT=3.00]	O ^a	•	•	0	٠		

Table 4.56 Sample Two: Test of parallel lines of ordinal logistic regression between ABUT and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	36.593			
General	30.892	5.701	2	.058

Ordinal regression was implemented to identify the functional relationship between ABUT and SEVERITY. The output is shown in Table $4.54 \sim \text{Table } 4.56$. The model fit

information shows that this model fits significantly better than an empty model (i.e., a model with no predictors). The table of parameter estimates shows that ABUT=2 (spill-through) is statistically significant. The log odds of being in a higher settlement level will increase by 0.320 if moving from the ABUT=3 (perched) to the ABUT=1 (closed). Similarly, the log odds of being in a higher settlement level will increase by 0.749 if moving from the ABUT=3 (perched) to the ABUT=2 (spill-through). In other words, the bridges with perched abutment experience a lower level of settlement compared to other types of abutment given other independent variables are the same.

Generally, the interpretation for logistic regression between two nominal variables is very cumbersome, especially the outcome variable and independent variables have more than two levels. In this instance, the output from a mosaic plot can be helpful to explore the relationship between two categorical variables. The logistic regression can be used to define the functional relationship between two categorical variables.

4.5.3 Conclusions

The mosaic plots of sample one and sample two both show that the bridges with perched abutment tend to present a higher proportion in minimal settlement than other types of abutment. The SPSS output of sample one indicates there is no association between ABUT and SEVERITY. While the output of sample two indicates a relationship exist between ABUT and SEVERITY. The interpretation of parameter estimates of sample two concludes that: (1) the log odds of being in a higher settlement level will increase by 0.320 if moving from the ABUT=3 (perched) to the ABUT=1 (closed), and (2) the log odds of being in a higher settlement level will increase by 0.749 if moving from the ABUT=3 (perched) to the ABUT=2 (spill-through). Sample two demonstrates that the

bridges with perched abutment experience a lower level of settlement compared to other types of abutment given other independent variables are the same.

4.6 Embankment Height

4.6.1 Sample One

A scatterplot of approach settlement levels by embankment height of sample one is given in Figure 4.21. This plot cannot provide a clear picture of the nature of the relationship between EH and SEVERITY. In addition, a frequency table of embankment height group (EHG) by SEVERITY is used to group the independent variable EG into four categories defined in Table 4.57. The EHG of 0~20 feet shows a higher proportion of settlement in minimal than the group of above 20 feet. While EHG of above 20 feet shows a higher proportion of settlement in severe than the group of 0~20 feet. The output from SPSS shows that the null hypothesis that the regression coefficient in the model is equal to zero cannot be rejected because the p-value of the model is 0.847. In other words, this model is not better than a null model without any predictors and cannot reflect the relationship between EH and SEVERITY.

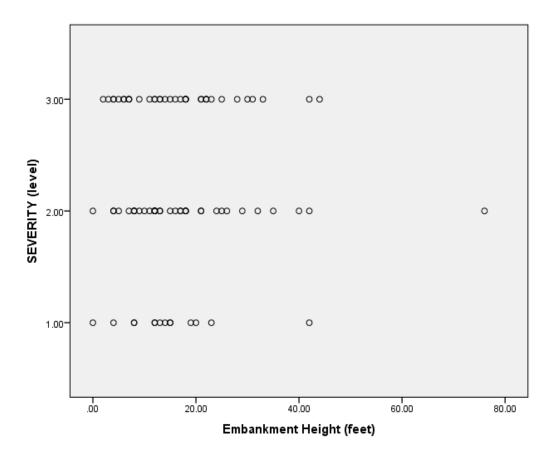


Figure 4.21 Sample One: Scatterplot of approach settlement levels by embankment height

Table 4.57 Sample One: Frequency table of embankment height group (EHG) by SEVERITY

EH group	Severity			Total	Mean	
(feet)	Minimal	Moderate	Severe	Total	Minimal	Severe
0~10	4	10	11	25	0.160	0.440
11~20	8	15	13	36	0.222	0.361
21~30	1	6	9	16	0.063	0.563
Above 30	1	5	4	10	0.100	0.400
Total	14	36	37	87		

Table 4.58 Sample One: Model fitting information of ordinal logistic regression between EH and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	111.179			
Final	111.142	.037	1	.847

Table 4.59 Sample One: Parameter estimates of ordinal logistic regression between EH and SEVERITY

							95% Co	nfidence
			Std. Estimate		df	Sig.	Interval	
			Error				Lower	Upper
							Bound	Bound
	[SEVERITY = 1.00]	-1.597	.407	15.373	1	.000	-2.396	799
Threshold								
	[SEVERITY = 2.00]	.356	.361	.970	1	.325	352	1.064
Location	ЕН	.003	.017	.034	1	.853	030	.036

Table 4.60 Sample One: Test of parallel lines of ordinal logistic regression between EH and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	111.142			
General	110.380	.762	1	.383

4.6.2 Sample Two

A descriptive analysis was conducted by creating a scatterplot of approach settlement levels by embankment height and a frequency table of embankment height group (EHG) by SEVERITY. The EHG of 0~10 feet shows the highest proportion of settlement in minimal than the other groups. While EHG of above 20 feet shows a higher proportion of settlement in severe than the group of 0~20 feet. The output from SPSS shows that the null hypothesis that the regression coefficient in the model is equal to zero would be rejected because the p-value of the model is 0.003. In other words, this model is significantly better than a null model without any predictors. The relationship between EH and Severity should be identified by comparing to a comprehensive model considering all other independent variables.

Figure 4.22 Sample Two: Scatterplot of approach settlement levels by embankment height

Table 4.61 Sample Two: Frequency table of embankment height group (EHG) by SEVERITY

EH group	Severity			Total	Mean	
(feet)	Minimal	Moderate	Severe	Total	Minimal	Severe
0~10	127	145	81	333	0.381	0.243
11~20	38	78	40	156	0.243	0.256
21~30	14	32	21	67	0.209	0.313
Above 30	13	18	13	44	0.295	0.295
Total	192	273	135	600		

Table 4.62 Sample Two: Model fitting information of ordinal logistic regression between EH and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	304.684			
Final	295.877	8.807	1	.003

Table 4.63 Sample Two: Parameter estimates of ordinal logistic regression between EH and SEVERITY

							95% Co	nfidence
			Std. Estimate	Wald	df	Sig.	Inte	rval
			Error				Lower	Upper
							Bound	Bound
	[SEVERITY = 1.00]	512	.119	18.577	1	.000	745	279
Threshold								
	[SEVERITY = 2.00]	1.502	.134	125.068	1	.000	1.239	1.766
Location	ЕН	.021	.007	8.846	1	.003	.007	.034

Table 4.64 Sample Two: Test of parallel lines of ordinal logistic regression between EH and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	295.877			
General	295.876	.001	1	.978

4.6.3 Conclusions

Scatterplots of approach settlement levels by embankment height for sample one and sample two cannot provide a clear picture of the relationship between EH and SEVERITY. For sample one, the embankment height group of 11~20 feet presents the highest proportion of approaches with minimal settlement. For sample two, the embankment height group of 0~10 feet presents the highest proportion of approaches with minimal settlement. Both samples show that shallow embankment tend to settle less than deep embankment. In return, group of above 30 feet presents the highest proportion of approaches with severe settlement for sample one and group of 21~30 feet presents the highest proportion of approaches with severe settlement for sample two. Both samples show that deep embankment tend to settle more than shallow embankment.

The SPSS output for sample one and sample two are different. The model of sample two is better to reflect a relationship between EH and SEVERITY than a null model without any predictors. The model of sample two shows that the ordered log odds of being in a higher level of settlement will increase 0.021 for a one unit increase in embankment height. In other words, the higher the embankment, the higher level of settlement may

occur. However, this model cannot identify the exact relationship between EH and SEVERITY. All other predictors should be considered to create a comprehensive model to define the relationship between EH and SEVERITY by comparing to other independent variables.

4.7 Foundation Soil Depth

4.7.1 Sample One

A scatterplot of approach settlement levels by foundation soil depth was given for a descriptive analysis, but this plot cannot provide a clear picture of the relationship between FSD and SEVERITY. Then a frequency table of foundation soil depth by severity was created to figure out the changing tendency of the proportion of approaches with minimal settlement and severe settlement. Table 4.65 shows that shallow foundations have a higher proportion of settlement in minimal than deep foundations. The functional relationship between FSD and SEVERITY was attempted to be identified by SPSS. The output shows that the regression coefficient of FSD for SEVERITY is 0.942, which implies that there is no association between FSD and SEVERITY. Moreover, the model is not different from a null model and cannot fit the relationship well.

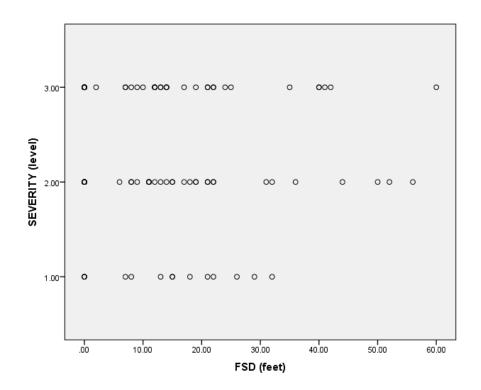


Figure 4.23 Sample One: Scatterplot of approach settlement levels by foundation soil depth

Table 4.65 Sample One: Frequency table of foundation soil depth (FSD) by SEVERITY

FSD (feet)		Severity		Total	Mean	
TSD (ICCI)	Minimal	Minimal Moderate		10141	Minimal	Severe
0~10	5	12	14	31	0.161	0.452
11~20	4	13	11	28	0.143	0.393
21~30	4	4	6	14	0.286	0.429
31~40	1	3	3	7	0.143	0.429
Above 40	0	4	3	7	0	0.429
	14	36	37	87		

Table 4.66 Sample One: Model fitting information of ordinal logistic regression between FSD and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	102.216			
Final	102.211	.006	1	.940

Table 4.67 Sample One: Parameter estimates of ordinal logistic regression between FSD and SEVERITY

							95% Confidence	
		Estimate	Std. Error	Wald	df	Sig.	Interval	
							Lower	Upper
							Bound	Bound
	[SEVERITY = 1.00]	-1.635	.370	19.550	1	.000	-2.359	910
Threshold								
	[SEVERITY = 2.00]	.318	.315	1.017	1	.313	300	.936
Location	FSD	.001	.014	.005	1	.942	027	.029

Table 4.68 Sample One: Test of parallel lines of ordinal logistic regression between FSD and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	102.211			
General	101.998	.212	1	.645

4.7.2 Sample Two

No distinct relationship between FSD and SEVERITY is found by examining the scatterplot of approach settlement levels by foundation soil depth. The frequency table of FSD by SEVERITY shows that shallow foundations are more likely to present a higher settlement level than deep foundations. The output from the ordinal logistic regression indicates that there is an association between FSD and SEVERITY. For a unit increase in FSD, the log odds of being in a higher level of settlement would be expected to decrease 0.018.

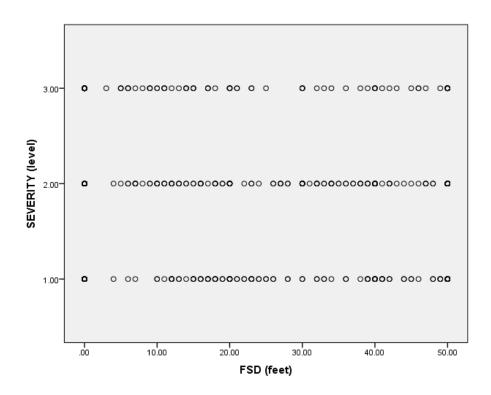


Figure 4.24 Sample Two: Scatterplot of approach settlement levels by foundation soil depth

Table 4.69 Sample Two: Frequency table of foundation soil depth (FSD) by SEVERITY

FSD (feet)		Severity		Total	Mean	
	Minimal	Minimal Moderate			Minimal	Severe
0~10	59	127	75	261	0.226	0.287
11~20	32	33	20	85	0.376	0.235
21~30	18	21	9	48	0.375	0.188
31~40	21	37	10	68	0.309	0.147
Above 40	62	55	21	138	0.449	0.152
	192	273	135	600		

Table 4.70 Sample Two: Model fitting information of ordinal logistic regression between FSD and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	271.677			
Final	250.393	21.285	1	.000

Table 4.71 Sample Two: Parameter estimates of ordinal logistic regression between FSD and SEVERITY

							95% Co	nfidence
		Estimate		Wald	df	Sig.	Inte	rval
			Error				Lower	Upper
							Bound	Bound
	[SEVERITY	-1.137	.124	84.670	1	.000	-1.379	895
	= 1.00]	1.137	.121	01.070	1	.000	1.577	.075
Threshold								
	[SEVERITY	.910	.120	57.677	1	.000	.675	1.145
	= 2.00]							
Ŧ	Fab	010	00.4	20.505		000	00.5	010
Location	FSD	018	.004	20.797	1	.000	026	010

Table 4.72 Sample Two: Test of parallel lines of ordinal logistic regression between FSD and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	250.393			
General	250.392	.001	1	.980

4.7.3 Conclusions

Descriptive analysis of sample one indicates that shallow foundations are tend to have a lower level of settlement compared to deep foundations. While the results from sample two reverse this conclusion. Ordinal logistic regression of sample one shows that there is no association between FSD and SEVERITY, while the sample two shows that for a one unit increase in FSD, a 0.018 decrease in the ordered log odds of being in a higher level of settlement would be expected. Note that the frequency table of FSD by SEVERITY of sample one has empty cells, which may lead to an unstable model for interpretation.

4.8 Foundation Soil Consistency

4.8.1 Sample One

No distinct relationship between FSC and SEVERITY is found by examining the scatterplot of approach settlement levels by foundation soil depth. The mosaic plot of settlement levels across foundation soil consistency shows that the proportion of approaches in minimal settlement varies slightly in each of group of consistency. In

addition, the model from ordinal logistic regression reveals that the model cannot reflect the relationship and there is no association between FSC and SEVERITY.

Table 4.73 Sample One: Frequency table of foundation soil consistency (FSC) by SEVERITY

FSC (level)		Severity					
1 SC (ICVCI)	Minimal	Moderate	Severe	Total			
Soft	1	4	2	7			
Stiff	5	11	15	31			
Very stiff	5	13	12	30			
Hard	3	8	8	19			
Total	14	36	37	87			

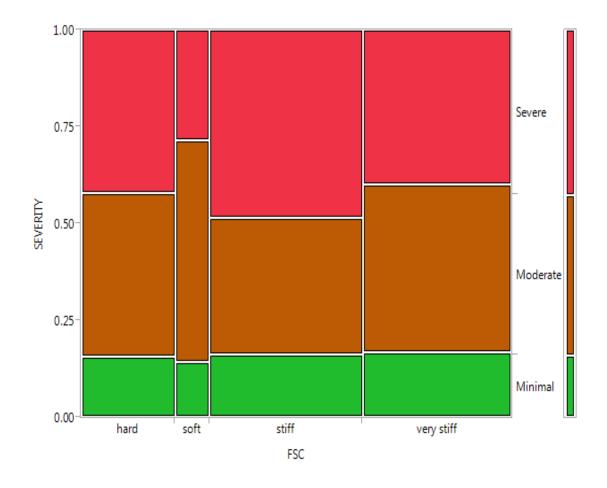


Figure 4.25 Sample One: Distribution of settlement levels across foundation soil consistency

Table 4.74 Sample One: Model fitting information of ordinal logistic regression between FSC and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	25.498			
Final	24.904	.594	3	.898

Table 4.75 Sample One: Parameter estimates of ordinal logistic regression between FSC and SEVERITY

		Estimate	Std. Error	Wald	df	Sig.	95% Con Inte Lower Bound	
Threshold	[SEVERITY = 1.00]	-1.652	.481	11.812	1	.001	-2.595	710
	[SEVERITY = 2.00]	.310	.439	.500	1	.480	550	1.171
	[FSC=1.00]	339	.827	.168	1	.682	-1.960	1.283
Location	[FSC=2.00]	.186	.550	.115	1	.735	892	1.264
	[FSC=3.00]	080	.551	.021	1	.885	-1.159	1.000
	[FSC=4.00]	0	٠	٠	0	٠		

Table 4.76 Sample One: Test of parallel lines of ordinal logistic regression between FSC and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	24.904			
General	24.149	.756	3	.860

4.8.2 Sample Two

The mosaic plot of settlement levels across foundation soil consistency shows that the group of hard of foundation soil consistency has the lowest proportion in minimal settlement while has the highest proportion in severe settlement. The SPSS output shows that there is an association between FSC and SVERITY and the model is significantly better than a null model without any predictors. The logit odds of being in a higher level of settlement will decrease by 0.432 if moving from FSC=4 (hard) to FSC=1 (soft). The logit odds of being in a higher level of settlement will decrease by 0.494 if moving from FSC=4 (hard) to FSC=2 (stiff). The logit odds of being in a higher level of settlement will decrease by 0.528 if moving from FSC=4 (hard) to FSC=3 (very stiff). In other words, the approaches with a higher level of foundation soil consistency tend to experience a lower level of settlement.

Table 4.77 Sample Two: Frequency table of foundation soil consistency (FSC) by SEVERITY

FSC (level)		Severity				
	Minimal	Moderate	Severe	Total		
Soft	12	16	7	35		
Stiff	62	74	34	170		
Very stiff	65	71	35	171		
Hard	53	112	59	224		
Total	192	273	135	600		

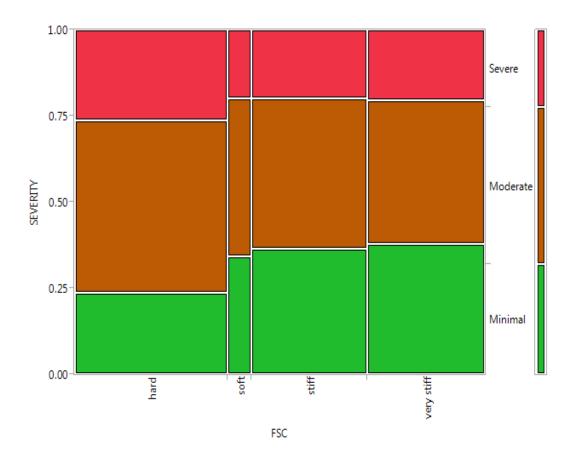


Figure 4.26 Sample Two: Distribution of settlement levels across foundation soil consistency

Table 4.78 Sample Two: Model fitting information of ordinal logistic regression between FSC and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	51.727			
Final	41.439	10.288	3	.016

Table 4.79 Sample Two: Parameter estimates of ordinal logistic regression between FSC and SEVERITY

				Wald	df	lf Sig.	95% Confidence Interval	
			Error				Lower	Upper
							Bound	Bound
	[SEVERITY	-1.076	.137	62.020	1	.000	-1.344	808
Threshold	= 1.00]							
	[SEVERITY	.942	.135	49.020	1	.000	.679	1.206
	= 2.00]							
	[FSC=1.00]	432	.340	1.614	1	.204	-1.099	.235
Landing	[FSC=2.00]	494	.191	6.680	1	.010	868	119
Location	[FSC=3.00]	528	.191	7.638	1	.006	902	153
	[FSC=4.00]	0	•		0	•	•	

Table 4.80 Sample Two: Test of parallel lines of ordinal logistic regression between FSC and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	41.439			
General	39.446	1.993	3	.574

4.8.3 Conclusions

The descriptive analysis of sample one and sample two cannot provide a clear picture of the relationship between FSC and SVERITY. The ordinal logistic regression of sample one shows that there is no association between FSC and SEVERITY, while the sample two shows that FSC is statistically significant. The mosaic plot of sample two shows that the group of hard foundation soil consistency has the lowest proportion in minimal settlement while has the highest proportion in severe settlement. But the functional relationship gained by SPPS indicates that the approaches with a higher level of foundation soil consistency tend to experience a lower level of settlement.

4.9 Geographical Location

Table 4.81 lists the two samples with different approach settlement levels in each district. For sample one, there is no data from district two, three, and eight. For sample two, there are few data from district four and eight. From the mosaic plot of distribution of settlement levels across each district of sample one, district eleven presents the highest proportion of approaches with minimal settlement while the relatively small proportion of approaches with severe settlement. District twelve presents the highest proportion of approaches with severe settlement. The mosaic plot of sample two shows that the district one and district ten behaves much better than other districts with the highest proportion in minimal settlement while the lowest proportion in severe settlement.

Table 4.81 Distribution of the Bridge Approaches from Each District

		Sample (One			Sample 7	Two	
District		Severity		Total	Severity			Total
	Minimal	Moderate	Severe	Total	Minimal	Moderate	Severe	Total
1	1	2	1	4	97	65	5	167
2	0	0	0	0	0	6	12	18
3	0	0	0	0	11	13	4	28
4	0	2	2	4	0	0	1	1
5	0	10	1	11	1	17	18	36
6	5	9	16	30	11	39	18	68
7	0	4	5	9	7	25	40	72
8	0	0	0	0	0	1	1	2
9	0	3	2	5	3	16	11	30
10	1	1	1	3	21	13	0	34
11	7	5	6	18	5	31	9	45
12	0	0	3	3	36	47	16	99
	14	36	37	87	192	273	135	600

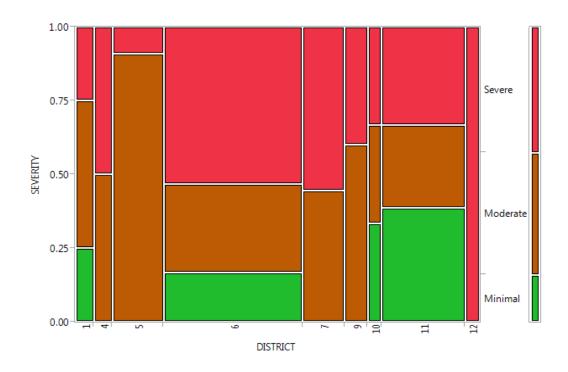


Figure 4.27 Sample One: Distribution of settlement levels across transportation district

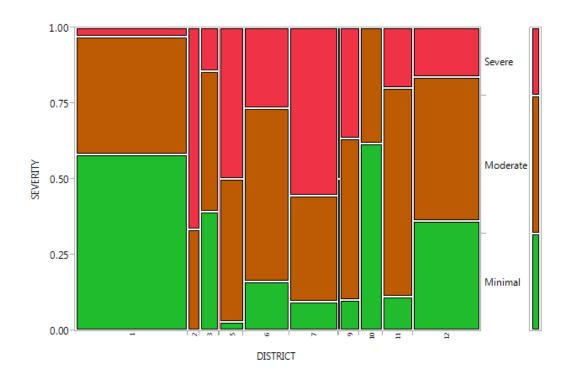


Figure 4.28 Sample Two: Distribution of settlement levels across transportation district

Ordinal logistic regression was performed at first for both samples to explore the functional relationship between DISTRICT and SEVERITY. The test of parallel lines of sample one shows that the null hypothesis states that the slope coefficients are the same across response categories is violated. Therefore, multinomial logistic regression was carried out for sample one. The output of multinomial logistic regression for sample one and ordinal logistic regression for sample two is shown in the following tables.

Table 4.82 Sample One: Test of parallel lines of ordinal logistic regression between

DISTRICT and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	47.844			
Comensi	20.160	10.694	0	012
General	28.160	19.684	8	.012

Table 4.83 Sample One: Model fitting information of multinomial logistic regression between district and SEVERITY

	Model Fitting Criteria		Likelihood Ratio Tests			
Model	AIC	BIC	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	64.942	69.873	60.942			
Final	63.434	73.297	55.434	5.508	2	.064

Table 4.84 Sample One: Parameter estimates of multinomial logistic regression between DISTRICT and SEVERITY

SE	VERITY	В	Std.	Wald	df	Sig.	Exp(B)	95% Co.	
			Error				•	Lower	Upper
								Bound	Bound
	Intercept	-2.056	1.014	4.109	1	.043			
1.00									
	DISTRICT	.137	.118	1.340	1	.247	1.146	.910	1.445
	Intercept	.881	.667	1.742	1	.187			
2.00							0=0		
	DISTRICT	130	.090	2.111	1	.146	.878	.736	1.047

Note: The reference category is: 3.00

Table 4.85 Sample One: Parameter estimates of multinomial logistic regression between DISTRICT and SEVERITY

	Predicted					
Observed	1.00	2.00	3.00	Percent		
	1.00	2.00	3.00	Correct		
1.00	0	6	8	0.0%		
2.00	0	23	13	63.9%		
3.00	0	20	17	45.9%		
Overall Percentage	0.0%	56.3%	43.7%	46.0%		

By analyzing the output from the multinomial logistic regression for sample one, the p-value of the model is slightly larger than 0.05. It is uncertain to conclude that there is an association between DISTRICT and SEVERITY for sample one. All other predictors should be considered to create a comprehensive model to evaluate the relationship between DISTRICT and SEVERITY. The interpretation of the parameter estimates is not given here because it may lead to ambiguity.

Table 4.86 Sample Two: Model fitting information of ordinal logistic regression between DISTRICT and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	297.488			
Final	84.835	212.653	11	.000

Table 4.87 Sample Two: Parameter estimates of ordinal logistic regression between DISTRICT and SEVERITY

							95% Co	nfidence
		Estimate	Std.	Wald	df	Sig.	Interval	
		Listimuce	Error	, vara	G1	218.	Lower	Upper
							Bound	Bound
Threshold	[SEVERITY = 1.00]	699	.199	12.304	1	.000	-1.089	308
	[SEVERITY = 2.00]	1.992	.225	78.050	1	.000	1.550	2.434
	[DISTRICT=1.00]	-1.053	.251	17.606	1	.000	-1.544	561
	[DISTRICT=2.00]	2.733	.548	24.884	1	.000	1.659	3.806
	[DISTRICT=3.00]	150	.414	.131	1	.718	962	.662
	[DISTRICT=4.00]	20.763	.000		1	•	20.763	20.763
	[DISTRICT=5.00]	2.058	.392	27.584	1	.000	1.290	2.826
Location	[DISTRICT=6.00]	.961	.312	9.506	1	.002	.350	1.572
	[DISTRICT=7.00]	2.133	.318	44.891	1	.000	1.509	2.756
	[DISTRICT=8.00]	2.106	1.403	2.254	1	.133	643	4.856
	[DISTRICT=9.00]	1.457	.411	12.563	1	.000	.651	2.263
	[DISTRICT=10.00]	-1.240	.404	9.433	1	.002	-2.032	449
	[DISTRICT=11.00]	.900	.355	6.447	1	.011	.205	1.595
	[DISTRICT=12.00]	0	•		0	•		

Table 4.88 Sample Two: Test of parallel lines of ordinal logistic regression between

DISTRICT and SEVERITY

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	84.835			
General	70.087	14.748	11	.194

The model from the ordinal logistic regression for sample two is statistically significant. There is a significant relationship between DISTRICT and SEVERITY. The ordered log-odds regression coefficients were obtained by comparing to DISTRICT=12. There are three districts (district one, three, and ten) behave better than district twelve with the interpretation as following:

- The log odds of being in a higher level of settlement severity will decrease by 1.053 if moving from the DISTRICT=12 TO DISTRICT=1,
- The log odds of being in a higher level of settlement severity will decrease by 0.150 if moving from the DISTRICT=12 TO DISTRICT=3,
- The log odds of being in a higher level of settlement severity will decrease by 1.240 if moving from the DISTRICT=12 TO DISTRICT=10.

4.10 Comprehensive Model

Based on the analyses between each parameter and dependent variable above, the dependent variable SEVERITY may not be ordinal in nature when analyzing the relationship between ADT and SEVERITY and the relationship between DISTRICT and

SEVERITY. Consequently, both ordinal logistic regression and multinomial logistic regression were carried out to develop comprehensive models for two samples, and these two different methods were compared to determine which one is better.

The model structure is shown in Table 4.89. For categorical variables (factors) in ordinal or multinomial logistic regression, dummy variables created to represent an attribute with two or more distinct categories/levels should be defined to interpret the SPSS output. For each categorical variable with K levels, K-1 dummy variables should be assumed. Dummy variables in this study is defined in Table 4.90. According to different probability theory, output form of the models from ordinal logistic regression and multinomial logistic regression is different. Proportional-odds cumulative logit model is possibly the most popular model for ordinal data. This model uses cumulative probabilities upto a threshold, thereby making the whole range of ordinal categories binary at that threshold. The response Y in this study has three levels which are represented by 1, 2, and 3, and the associated probabilities are π_1 , π_2 , and π_3 . For ten independent variables, the following equations are supposed to be developed for ordinal logistic regression.

$$Logit \frac{\pi_1}{1 - \pi_1} = Logit \frac{\pi_1}{\pi_2 + \pi_3} = -\alpha_1 + \beta_1 x_1 + \dots + \beta_{10} x_{10} \quad (4.12)$$

$$Logit \frac{\pi_1 + \pi_2}{1 - (\pi_1 + \pi_2)} = Logit \frac{\pi_1 + \pi_2}{\pi_3} = -\alpha_2 + \beta_1 x_1 + \dots + \beta_{10} x_{10} \quad (4.13)$$

$$\pi_1 + \pi_2 + \pi_3 = 1 \quad (4.14)$$

Therefore,

$$\pi_1 = \frac{\exp(-\alpha_1 + \beta_1 x_1 + \dots + \beta_{10} x_{10})}{1 + \exp(-\alpha_1 + \beta_1 x_1 + \dots + \beta_{10} x_{10})} \quad (4.15)$$

$$\pi_2 = \frac{\exp(-\alpha_1 + \beta_1 x_1 + \dots + \beta_{10} x_{10})}{1 + \exp(-\alpha_1 + \beta_1 x_1 + \dots + \beta_{10} x_{10})} - \pi_1 \quad (4.16)$$

$$\pi_3 = 1 - \pi_1 - \pi_2 \qquad (4.17)$$

When the assumption states that the slope coefficients in the model are the same across response categories for ordinal logistic regression is rejected, a less restrictive model of multinomial logistic regression is an optimal method. Multinomial logistic regression models how multinomial response variable depends on a set of explanatory variables. The following equations, if Y=3 is set as the referent, are supposed to be developed for multinomial logistic regression with ten independent variables. It is important to note that the parameter coefficients for different equations are different, which is the biggest difference of the output between the ordinal logistic regression and multinomial logistic regression.

$$Logit \frac{\pi_1}{\pi_3} = \alpha_1 + \beta_{11}x_1 + \dots + \beta_{110}x_{10} \quad (4.18)$$

$$Logit \frac{\pi_2}{\pi_3} = \alpha_2 + \beta_{21}x_1 + \dots + \beta_{210}x_{10} \quad (4.19)$$

$$\pi_1 + \pi_2 + \pi_3 = 1$$
 (4.20)

Table 4.89 Classification of the variables in the model

Covariates	Factors	Dependent
LENGTH	DISTRICT	SEVERITY
WIDTH	ABUT	
AGE	APPT	
ADT	FSC	
EH		
FSD		

Table 4.90 Dummy variables definition in the model

DISTRICT		ABUT		
Original	Dummy	Original	Dummy	
District1=1;	DIS1=1, otherwise DIS1=0;	Perched=1;	ABUT1=1, otherwise ABUT1=0;	
District2=2;	DIS2=1, otherwise DIS2=0;	Closed=2;	ABUT2=1, otherwise ABUT2=0;	
District3=3;	DIS3=1, otherwise DIS3=0;	Spill-	All ABUT=0	
District4=4;	DIS4=1, otherwise DIS4=0;	through=3		
District5=5;	DIS5=1, otherwise DIS5=0;			
District6=6;	DIS6=1, otherwise DIS6=0;			
District7=7;	DIS7=1, otherwise DIS7=0;			
District8=8;	DIS8=1, otherwise DIS8=0;			
District9=9;	DIS9=1, otherwise DIS9=0;			
District10=10;	DIS10=1, otherwise DIS10=0;			
District11=11;	DIS11=1, otherwise DIS11=0;			
District11=12	All DIS=0			

APPT		FSC		
Original	Dummy	Original	Dummy	
Flexible=1;	APPT1=1, otherwise APPT1=0;	Soft=1;	FSC1=1, otherwise FSC1=0;	
Rigid=2	All APPT=0	Stiff=2;	FSC2=1, otherwise FSC2=0;	
		Very stiff=3;	FSC3=1, otherwise FSC3=0;	
		Hard=4	All FSC=0	

4.10.1 Sample One

An ordinal regression considering all predictors for prediction of approach settlement levels based on project characteristics was carried out. Some important model information are shown in Table 4.91 ~ Table 4.94, and the complete output for this ordinal logistic regression is shown in Appendix E. From the model fitting information table, p-value of this model is 0.056. If an alpha 0.05 is set, the assumption that all regression coefficients of predictors are zero cannot be violated and this model is not better than a null model (without any predictors). In other words, this comprehensive model cannot fit the relationship between all predictors and settlement levels well. The goodness of fit table presents two tests, Pearson and Deviance, of the null hypothesis that the model adequately fits the data. If the significance value is small (less than 0.05), then the model does not adequately fit the data. In this case, its value is greater than 0.05, so the data are consistent with the model assumptions.

From the table of pseudo R-square, there are three pseudo R-squared values computed by three different methods. Logistic regression does not have an equivalent to the R-squared that is found in ordinary least squares (OLS) regression. OLS is concerned with the squares of the errors. It tries to find a fitting line going through the sample data that

minimizes the sum of the squared errors; however, many people have tried to come up with one. There are a wide variety of pseudo R-squared statistics which can give contradictory conclusions. Because these statistics do not mean what R-squared means in OLS regression (the proportion of variance of the response variable explained by the predictors). Generally, these pseudo r-square values are not very high either not very low, it is suggested interpreting them with great caution. The test of parallel lines indicates that the proportional odds assumption is not violated and the method of ordinal regression for identifying the relationship between approach settlement and its causative factors is applicable. However, the model fitting information indicates that this model may not be better than a null model. Therefore, method of multinomial logistic regression was adopted.

Table 4.91 Sample One: Model fitting information of ordinal logistic regression

	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	177.953			
Final	147.035	30.918	20	.056

Table 4.92 Sample One: Goodness of fit of ordinal logistic regression

	Chi-Square	df	Sig.
Pearson	154.849	152	.421
Deviance	147.035	152	.599

Table 4.93 Sample One: Pseudo R-square of ordinal logistic regression

Method	Value
Cox and Snell	.299
Nagelkerke	.344
McFadden	.174

Table 4.94 Sample One: Test of parallel lines of ordinal logistic regression

Model	-2 Log Likelihood	Chi-Square	df	Sig.
Null Hypothesis	147.035			
General	116.451 ^b	30.584 ^c	20	.061

Another method of multinomial logistic regression was carried out aiming at developing a more accurate and parsimonious model. The complete output for this multinomial logistic regression is shown in Appendix F. The model fitting information of multinomial logistic regression shows that the p-value of model fitting information is smaller than 0.05, which means this model can fit the relationship between SEVERITY and all independent variables well. The goodness of fit table shows that the significance values from Pearson and Deviance tests are much higher than 0.05 and bigger than the results from ordinal logistic regression, which means this model adequately fits the data. The values of pseudo R-square are not very high or not very low. The likelihood ratio tests indicate AGE, DISTRICT, and FSD are statistically significant for this model. The interpretation of the parameter estimates is presented as following:

Minimal relative to Severe:

- AGE: If an approach was to increase AGE by one year, the multinomial log-odds
 of being minimal relative to severe would be expected to increase by 0.131 unit
 while holding all other variables in the model constant.
- DISTRICT: If a bridge was moved to district one from district twelve, the
 multinomial log-odds of being minimal relative to severe would be expected to
 increase by 21.483 unit while holding all other variables in the model constant.
 The estimated multinomial logistic regression coefficients for other districts can
 be interpreted in the same way.
- FSD: If the foundation soil depth for a bridge was to increase by one feet, the multinomial log odds of being minimal relative to severe would be expected to decrease by 0.175 unit while holding all other variables in the model constant.

Moderate relative to Severe:

- AGE: If an approach was to increase AGE by one year, the multinomial log-odds
 of being moderate relative to severe would be expected to increase by 0.014 unit
 while holding all other variables in the model constant.
- DISTRICT: If a bridge was moved to district one from district twelve, the
 multinomial log-odds of being moderate relative to severe would be expected to
 increase by 18.093 unit while holding all other variables in the model constant.
 The estimated multinomial logistic regression coefficients for other districts can
 be interpreted in the same way.
- FSD: If the foundation soil depth for a bridge was to increase by one feet, the multinomial log odds of being minimal relative to severe would be expected to decrease by 0.004 unit while holding all other variables in the model constant.

The probability that each settlement level may occur can be expressed in the following equations:

$$logit \frac{\pi_1}{\pi_3} = 11.246 + 0.003LENGTH - 0.013WIDTH + 0.131AGE$$

$$+ 0.000ADT - 0.084EH - 0.175FSD + 21.483DIS1$$

$$+ 0.000DIS2 + 0.000DIS3 + 1.767DIS4 + 3.722DIS5$$

$$+ 17.908DIS6 + 1.751DIS7 + 0.000DIS8 + 4.132DIS9$$

$$+ 24.518DIS10 + 20.706DIS11 + 0.000DIS12$$

$$- 37.279ABUT1 - 16.258ABUT2 + 0.000ABUT3$$

$$- 1.622APPT1 + 0.000APPT2 - 32.712FSC1$$

$$- 29.828FSC2 - 30.989FSC3 + 0.000FSC4 \quad (4.21)$$

$$logit \frac{\pi_2}{\pi_3} = -4.972 + 0.000LENGTH + 0.021WIDTH + 0.014AGE$$

$$+ 0.000ADT - 0.016EH - 0.004FSD + 18.093DIS1$$

$$+ 0.000DIS2 + 0.000DIS3 + 16.967DIS4 + 19.462DIS5$$

$$+ 16.612DIS6 + 17.134DIS7 + 0.000DIS8 + 17.776DIS9$$

$$+ 17.041DIS10 + 16.859DIS11 + 0.000DIS12$$

$$- 13.840ABUT1 - 0.075ABUT2 + 0.000ABUT3$$

$$+ 0.898APPT1 + 0.000APPT2 - 13.082FSC1$$

$$- 14.185FSC2 - 13.552FSC3 + 0.000FSC4 \quad (4.22)$$

The probability relationship between three severity levels:

$$\pi_1 + \pi_2 + \pi_3 = 1$$
 (4.23)

By using these equations above, it is able to compute the probability that each settlement category may occur based on all predictors. The settlement category with the largest

probability will be selected as the predicted category. The classification table shows the predicted accuracy for each settlement level. The overall percentage of correct of predicting the settlement levels is 67.8%.

Table 4.95 Sample One: Model fitting information of multinomial logistic regression

Model	Model Fitting Criteria	Likelihood Ratio Tests		Tests
	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	177.953			
Final	115.383	62.570	40	.013

Table 4.96 Sample One: Goodness of fit of ordinal logistic regression

	Chi-Square	df	Sig.
Pearson	120.916	132	.746
Deviance	115.383	132	.848

Table 4.97 Sample One: Pseudo R-square of multinomial logistic regression

Method	Value
Cox and Snell	.513
Nagelkerke	.589
McFadden	.352

Table 4.98 Sample One: Likelihood ration tests of multinomial logistic regression

	Model Fitting Criteria	Likelihood Ratio Tests		
Effect	-2 Log Likelihood of Reduced Model	Chi-Square	df	Sig.
Intercept	115.383	.000	0	
LENGTH	117.334	1.950	2	.377
WIDTH	116.110	.727	2	.695
AGE	129.661	14.278	2	.001
ADT	117.052	1.669	2	.434
ЕН	117.560	2.176	2	.337
FSD	121.448	6.065	2	.048
DISTRICT	152.321	36.938	16	.002
ABUT	120.157	4.773	4	.311
APPT	118.496	3.113	2	.211
FSC	119.905	4.521	6	.606

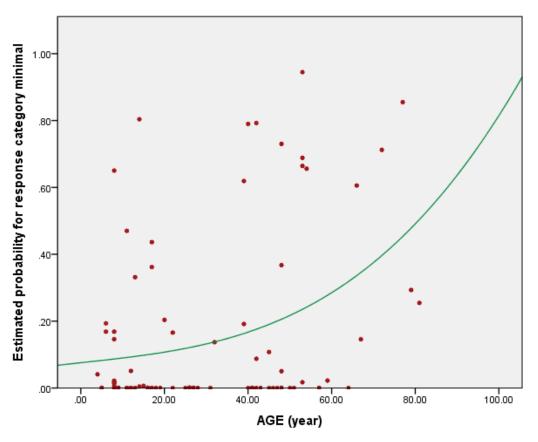
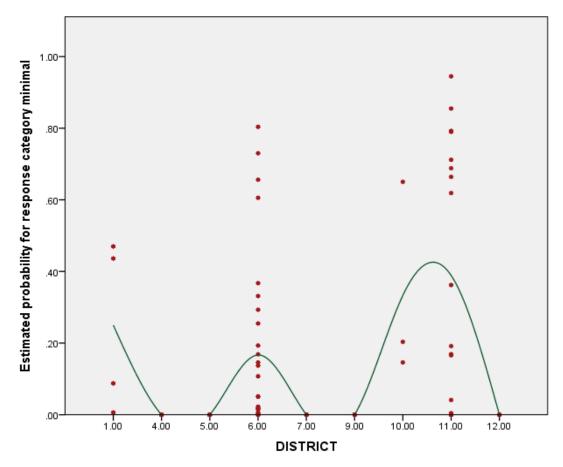


Table 4.99 Sample One: Classification table of multinomial logistic regression

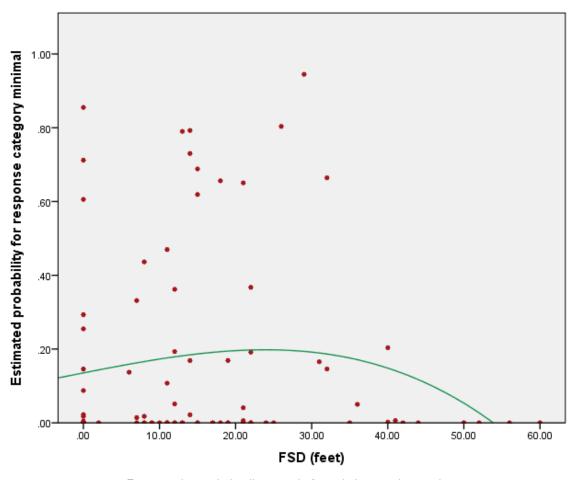
Observed	Predicted				
00001100	1.00	2.00	3.00	Percent Correct	
1.00	11	1	2	78.6%	
2.00	2	22	12	61.1%	
3.00	3	8	26	70.3%	
Overall Percentage	18.4%	35.6%	46.0%	67.8%	

With the purpose of better interpretation of the parameter estimates, the variation trends of the predicted probability of minimal versus the statistically significant predictors (AGE, DISTRICT, and FSD) were identified. From the variation trend of the estimated probability of minimal versus approach age, the probability of being in the settlement level of minimal will increase as approach age increases. From the variation trend of the estimated probability of minimal versus transportation districts, district one, ten, and eleven show a higher probability of being in the settlement level of minimal than other districts. Similarly, the variation trend of the estimated probability of minimal versus foundation soil depth indicates that the probability of being in the settlement level of minimal will increase at first as the foundation soil depth increase by 25 feet and then decrease as the foundation soil depth continues to increase.



Footnote: interpolation line stands for variation trend at total

Figure 4.29 Sample One: Variation trend of the estimated probability of minimal versus approach age



Footnote: interpolation line stands for variation trend at total

Figure 4.30 Sample One: Variation trend of the estimated probability of minimal versus transportation districts

Footnote: interpolation line stands for variation trend at total

Figure 4.31 Sample One: Variation trend of the estimated probability of minimal versus foundation soil depth

From the interpretation of the parameter estimates for significant predictors and the variation trends of the predicted probability of minimal versus the statistically significant predictors, the following conclusions can be concluded:

- As age of an approach increases, the probability of being in a higher settlement level will decrease.
- The performance of approaches in the district one, district ten, and district eleven behaves better than other districts.

 As foundation soil depth for a bridge increases, the probability of being in a higher settlement level will decrease.

4.10.2 Sample Two

Both ordinal and multinomial logistic regressions were carried out for sample two, and their results are similar. Both models are applicable and reliable for this sample, and the same conclusions were obtained. The outputs of ordinal logistic regression and multinomial logistic regression for sample two are shown in Appendix G and Appendix H, respectively. Method of multinomial logistic regression is solely illustrated in this section in order to make it easier to compare with sample one. Some important model fitting information for this multinomial logistic regression are shown in Table 4.100 ~ Table 4.104,. This model is better than a null model from the model fitting information, which implies that at least one parameter estimate is not zero. From the table of goodness of fit, the null hypothesis that the model adequately fits the data is true due to the high significance values from Pearson and Deviance tests. In other words, this model is able to fit the relationship between all predictors and SEVERITY well. From the table of likelihood ratio tests, DISTRICT, AGE, ADT, and APPT are statistically significant, while the others are not. The interpretation of the parameter estimates is summarized as following:

Minimal relative to Severe:

• DISTRICT: If a bridge was moved to district one from district twelve, the multinomial log-odds of being minimal relative to severe would be expected to increase by 2.278 while holding all other variables in the model constant. The

- estimated multinomial logistic regression coefficients for other districts can be interpreted in the same way.
- AGE: If an approach was to increase AGE by one year, the multinomial log-odds
 of being minimal relative to severe would be expected to decrease by 0.029 while
 holding all other variables in the model constant.
- ADT: If the ADT for an approach was to increase by one unit, the multinomial log odds of being minimal relative to severe would be expected to increase by
 1.0E-8 while holding all other variables in the model constant.
- APPT: If a bridge approach was changed to flexible from rigid, the multinomial log-odds of being minimal relative to severe would be expected to decrease by 0.977 while holding all other variables in the model constant.

Moderate relative to Severe:

- DISTRICT: If a bridge was moved to district one from district twelve, the multinomial log-odds of being moderate relative to severe would be expected to increase by 1.549 while holding all other variables in the model constant. The results from ordinal logistic regression also concludes that the log odds of being in a higher level of settlement severity will decrease by 1.124 if moving from the district twelve to district one while the other variables in the model are held constant.
- AGE: If an approach was to increase AGE by one year, the multinomial log-odds
 of being moderate relative to severe would be expected to decrease by 0.009
 while holding all other variables in the model constant. The ordinal logistic
 regression indicates: for a one unit increase in AGE on the expected SEVERITY

- level given the other variables are held constant in the model, the ordered logodds of being in a higher level of SEVERITY will increase by 0.017.
- ADT: If the ADT for an approach was to increase by one unit, the multinomial log odds of being moderate relative to severe would be expected to increase by 1.2E-8 unit while holding all other variables in the model constant. The parameter estimates from multinomial logistic regression show that the coefficient for ADT is approximately equal to zero due to a very small value. However, the ordinal logistic regression concludes that the ordered log-odds of being in a higher level of SEVERITY will increase by 1.910E-5 if increasing one unit in ADT on the expected SEVERITY level given the other variables are held constant in the model..
- APPT: If a bridge approach was changed to flexible from rigid, the multinomial log-odds of being moderate relative to severe would be expected to decrease by 0.525 while holding all other variables in the model constant. Similarly, the ordinal logistic regression concludes that the log odds of being in a higher level of settlement severity will increase by 0.529 if changing from the rigid approach to flexible approach while the other variables in the model are held constant.

Table 4.100 Sample Two: Model fitting information of multinomial logistic regression

	Model Fitting	Likelihood Ratio Tests		Tests
Model	Criteria			1000
1/10 001	-2 Log	Chi-Square	df	Sig.
	Likelihood	Cin-Square	ui	Sig.
Intercept	1270.242			
Only	1270.242			
Final	984.788	285.453	46	.000

Table 4.101 Sample Two: Goodness of fit of multinomial logistic regression

	Chi-Square	df	Sig.
Pearson	1128.538	1150	.669
Deviance	984.788	1150	1.000

Table 4.102 Sample Two:: Pseudo R-square of multinomial logistic regression

Methods	Value	
Cox and Snell	.379	
Nagelkerke	.430	
McFadden	.225	

Table 4.103 Sample Two: Likelihood ratio tests of multinomial logistic regression

Effect	Model Fitting Criteria	Likelihood Ratio Tests		sts
Lifect	-2 Log Likelihood of Reduced Model	Chi-Square	df	Sig.
Intercept	984.788	.000	0	
LENGTH	987.497	2.709	2	.258
WIDTH	988.640	3.852	2	.146
AGE	999.009	14.220	2	.001
ADT	994.452	9.664	2	.008
EH	984.984	.196	2	.907
FSD	986.155	1.367	2	.505
DISTRICT	1169.284	184.496	22	.000
ABUT	988.706	3.917	4	.417
APPT	991.444	6.655	2	.036
FSC	987.878	3.089	6	.798

Table 4.104 Sample Two: Classification table of multinomial logistic regression

	Predicted			
Observed	1.00	2.00	3.00	Percent Correct
1.00	122	62	8	63.5%
2.00	70	168	35	61.5%
3.00	8	54	73	54.1%
Overall Percentage	33.3%	47.3%	19.3%	60.5%

The probability that each settlement level may occur can be expressed in the following equations:

$$logit \frac{\pi_1}{\pi_3} = 4.624 - 0.001 LENGTH - 0.015 WIDTH - 0.29 AGE + 1.0 \times 10^{-8} ADT$$

$$- 0.006 EH - 0.003 FSD + 2.278 DIS1 - 18.812 DIS2 + 0.452 DIS3$$

$$- 20.848 DIS4 - 3.749 DIS5 - 0.980 DIS6 - 2.714 DIS7 - 17.614 DIS8$$

$$- 2.427 DIS9 + 16.495 DIS10 - 1.356 DIS11 + 0.000 DIS12$$

$$- 0.749 ABUT1 - 1.246 ABUT2 + 0.000 ABUT3 - 0.977 APPT1$$

$$+ 0.000 APPT2 - 0.188 FSC1 - 0.718 FSC2 - 1.026 FSC3$$

$$+ 0.000 FSC4 \qquad (4.24)$$

$$logit \frac{\pi_2}{\pi_3} = 2.423 + 0.000 LENGTH + 0.002 WIDTH - 0.009 AGE + 1.2 \times 10^{-8} ADT$$

$$- 0.005 EH + 0.007 FSD + 1.549 DIS1 - 1.907 DIS2 + 0.176 DIS3$$

$$- 20.103 DIS4 - 0.969 DIS5 - 0.140 DIS6 - 1.580 DIS7 - 1.072 DIS8$$

$$- 0.830 DIS9 + 15.721 DIS10 + 0.193 DIS11 + 0.000 DIS12$$

$$- 0.319 ABUT1 - 0.082 ABUT2 + 0.000 ABUT3 - 0.525 APPT1$$

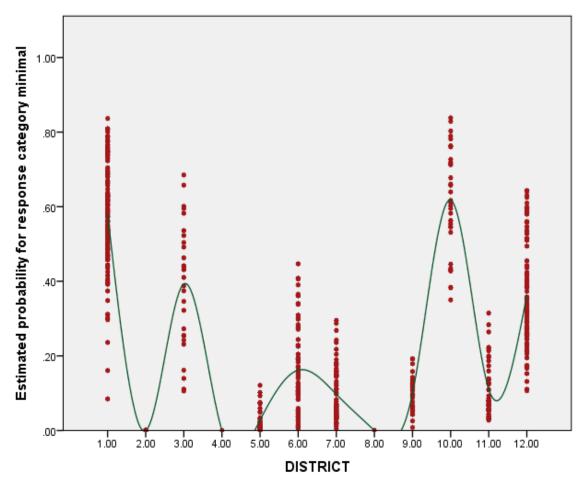
$$+ 0.000 APPT2 - 0.383 FSC1 - 0.662 FSC2 - 0.846 FSC3$$

$$+ 0.000 FSC4 \qquad (4.25)$$

The probability relationship between three severity levels:

$$\pi_1 + \pi_2 + \pi_3 = 1 \tag{4.26}$$

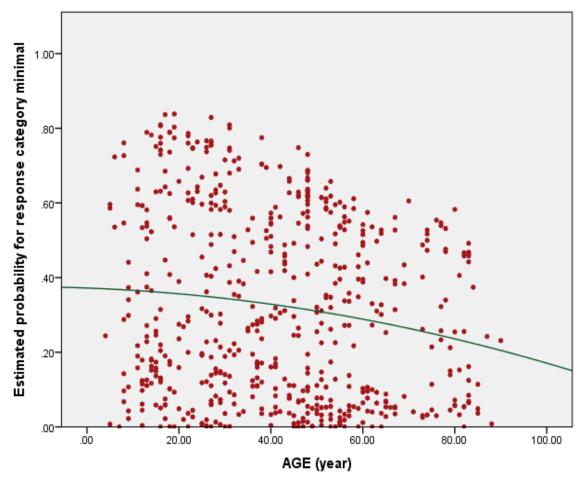
By using these three equations above, it is able to compute the probability that each settlement category may occur based on all predictors. The settlement category with the largest probability will be selected as the predicted category. The classification table



shows the predicted accuracy for each settlement level. The overall percentage of correct of predicting the settlement levels by using this model is 60.5%.

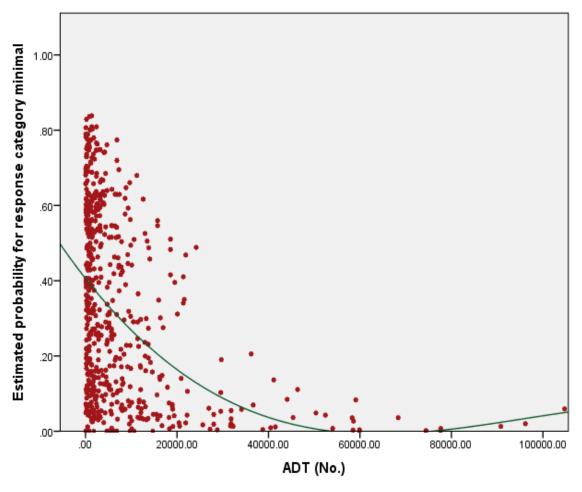
As the same way of dealing with sample one, the variation trends of the predicted probability of minimal versus the statistically significant predictors (DISTRICT, AGE, ADT, and APPT) were identified for sample two. From the variation trend of the estimated probability of minimal versus transportation districts, district one, three, and ten show a higher probability of being in the settlement level of minimal than other districts. From the variation trend of the estimated probability of minimal versus approach age, the probability of being in the settlement level of minimal will decrease as approach age increases. Similarly, the variation trend of the estimated probability of minimal versus average daily traffic indicates that the probability of being in the settlement level of minimal will decrease as the average daily traffic increase.

Furthermore, it is distinct to conclude that rigid approaches tend to have a higher probability of experiencing settlement levels of minimal than flexible approaches.



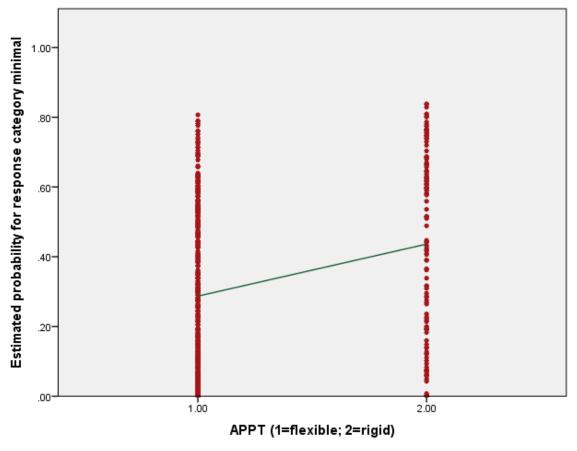
Footnote:interpolation line stands for variation trend at total

Figure 4.32 Sample Two: Variation trend of the estimated probability of minimal versus transportation districts



Footnote: interpolation line stands for variation trend at total

Figure 4.33 Sample Two: Variation trend of the estimated probability of minimal versus approach age



Footnote: interpolation line stands for variation trend at total

Figure 4.34 Sample Two: Variation trend of the estimated probability of minimal versus average daily traffic

Footnote: interpolation line stands for variation trend at total

Figure 4.35 Sample Two: Variation trend of the estimated probability of minimal versus average approach type

From the interpretation of the parameter estimates for significant predictors and the variation trends of the predicted probability of minimal versus the statistically significant predictors, the following conclusions can be concluded:

- The performance of approaches in the district one, district three, and district ten behaves better than other districts.
- As age of an approach increases, the probability of being in a higher settlement level will increase.

- As average daily traffic for an approach increases, the probability of being in a higher settlement level will increase.
- Flexible approaches tend to have a higher probability of being in a higher settlement level than rigid approaches.

4.10.3 Comparison between Two Models

The process of applying a predictive model to a set of data is referred to as scoring the data. SPSS has procedures for building predictive models of logistic regressions. Once a model has been built, the model specifications can be saved in a file that contains all of the information necessary to reconstruct the model. Then the model file can be used to generate predictive scores in other datasets. This section used the utility named Scoring Wizard in SPSS to apply the model created with sample one to dataset of sample two and generate predicted settlement category, and vice versa apply the model created with sample two to dataset of sample one. The scoring process consists of three basic steps:

- 1. Build the model and save the model file. A predictive model can be built by using a dataset for which the outcome of interest is known. For example, if a model that will predict the settlement levels for sample one is aimed to be developed, a dataset that already contains information on observed settlement levels is supposed to be possessed.
- 2. Apply that model to a different dataset to obtain predicted outcomes. For example, apply the model created from sample one to data of sample two, it needs to assume that the outcome of settlement levels for sample two is not known.
- 3. Finally, compare the predicted settlement category with the observed settlement category and obtain the accuracy rate for both models.

The comparison between the observed settlement category and the predicted settlement category is shown in Table 4.105. When applying the model created with sample one to dataset of sample two, the accuracy rate of predicting the right settlement category is 30.2%. Conversely, when applying the model created with sample two to dataset of sample one, the accuracy rate of predicting the right settlement category is 28.7%. Both accuracy rates are slightly lower than a stochastic probability of 33% that could be obtained by guessing the settlement category randomly. This is not surprising because it demonstrates these two models are different models that are developed from different samples based on different selection criterions. The users can decide which one to use by different requirements and purposes.

Table 4.105 Percent correct of applying two model to each other dataset

Category	Percent Correct
Apply model one to data of sample two	30.2%
Apply model two to data of sample one	28.7%

In logistic regressions, the count data (i.e., LENGTH and ADT) with a considerable variability are processed as continuous variables while they are not truly continuous. A check for empty or small cells by doing a crosstab between categorical independent variables and the outcome variable was conducted and shows that there are more than 65% cells (i.e., dependent variable levels by observed combinations of predictor variable values) with zero frequencies for both samples. If a cell has very few cases, the model may become unstable or it might not run at all. The size of sample two is much bigger

than sample one. In this instance, models developed from sample one may not be stable even if the model could gain a satisfied p-value.

4.10.4 Conclusions

The model developed from the method of ordinal logistic regression for sample one is found not statistically significant. In other words, this model is not better than a null model and cannot fit the relationship between settlement levels and all predictors well. Then a multinomial logistic regression was conducted on sample one. The results show that AGE, DISTRICT, and FSD are statistically significant while the others are not. This model indicates that there is a negative correlation between AGE and SEVERITY, which means the probability of being in a higher settlement level will decrease as the approach age increases. This conclusion is contrary to the relationship between AGE and SEVERITY of sample two. This reverse can be explained by the fact that a selection bias may be formed because the bridges with severe bump usually impress respondents most. Sample one shows that district one, district ten, and district eleven behave better than other districts in the treatment of differential settlement at bridge ends. In addition, the probability of being in a higher settlement level will decrease as foundation soil depth for a bridge increases.

Both ordinal and multinomial logistic regressions were implemented for sample two, and both methods yield the similar results. Both logistic regressions of sample two reveal that DISTRICT, AGE, ADT, and APPT are statistically significant for the relationship between the settlement severity and its causative predictors. District one, district three, and district ten behave better by comparing to other districts in the treatment of differential settlement at bridge ends. There is a positive correlation between AGE and

SEVERITY, which implies that the probability of being in a higher level of approach settlement will increase as the bridge age increases while holding all other predictors constant. As average daily traffic for an approach increases, the probability of being in a higher settlement level will increase. Furthermore, flexible approaches tend to have a higher probability of being in a higher settlement level than rigid approaches.

5 DISTIRCT INTERVIEWS

The research team visited five out of twelve districts to document various problems that are reported by local bridge personnel at bridge approaches. Bridge engineers in design, construction, and maintenance from district one, district three, district five, district eleven, and district twelve were interviewed in type of face to face or video conferences. This section is a summary of current practices that have been adopted for mitigating settlements at bridge approaches, as well as suggested methods or measures for managing bridge approaches which may produce potential settlements based on the results of predictive models. These current practices and suggestions are listed based on various groups of treatments such as foundation soil, backfill materials, approach slab, abutments, and drainage.

The major purpose of this chapter is to provide bridge engineers the prescriptive correction measures that could be applied to predicted differential settlement. On the one hand, the bridge designers could use the models developed in Chapter four to predict the approach settlement level based on foundation, approach, embankment, and other bridge characteristics for a new bridge. And then apply corresponding techniques or measures to prevent or minimize the settlement problems that may occur in the future. On the other hand, the bridge maintenance engineers also could use the models to predict approach settlement level for a bridge that has been constructed. And then implement maintenance measures for different levels of distressed approaches.

5.1 Foundation Soil

Foundation soils beneath the embankment and embankment fill is one of the important factors that influence the performance of bridge approaches (Wahls, 1990). Many studies have demonstrated that the settlement mechanism and process are different between soil of granular material type and soil of cohesive material type. For granular soils, such as sand, gravel, and rock, it doesn't need to undergo long term settlements, and the differential settlement between roadway and bridge upper structure can be negligible. While for cohesive soils, the settlement process is much longer than granular soils. Large settlements either from primary and/or secondary consolidation settlement may be formed in a long term. Subsequently, the settlements of the foundation soils and embankment fill may lead to a poor performance of bridge approaches. Generally, the time period for the primary phase can range from a few months in very granular soils to seven to ten years for some clays (Hopkins, 1973). Hence different mitigation methods are supposed to be adopted to deal with these two different type of foundation soils. Both predictive models developed from sample one and sample two show that there is no significant association between foundation soils and approach settlement levels. It does not equal to a deduction that the foundation soils cannot able to influence the approach settlement. However, it should be noted that the foundation soils information that was used to develop the models are foundation soils after improvement or special treatments, especially for highly compressible foundation soils. Appropriate treatment methods or measures for highly compressible foundation soils are necessary before the construction of the construction of bridge parts. Therefore, a full investigation about the foundation soils is needed prior to design and construction. After the literature review and interviews

with the local bridge engineers in these five districts, Table 5.1 summarizes the improvement/treatment techniques or measures for foundation soils in different soil types. According to the function of each stabilization technique, Puppala (2009) divided these techniques into three subcategories as shown in Table 5.2.

Table 5.1 Summary of foundation soils improvement methods based on soil type

Technique	Granular soils	Cohesive soils
Excavation and replacement	×	√
Preloading with or without surcharge	√	√
Dynamic compaction	✓	✓
Grouting	✓	✓
Drains	X	✓
Grave/Stone columns	×	✓
Geosynthetics	√	✓

Table 5.2 Summary of foundation soils improvement methods based on soil type based on the function (Puppala, 2009)

Mechanical	Hydraulic	Reinforcement
		Columns:
		Stone and lime columns;
		Geopiers;
		Concrete injected columns;
Excavation and	Sand draing	Deep soil mixing columns
replacement; Preloading and surcharge; Dynamic compaction	Sand drains; Prefabricated drains; Surcharge loading	Deep foundations:
		In-situ compacted piles;
		CFA piles;
		Driven piles
		Geosynthetics:
		Geotexitiles/Geogrids;
		Geocells

The current practices regrading foundation preparation are summarized by interviewing local bridge engineers. The following conclusions can be obtained:

- Most bridge design engineers consider that a reliable subsurface exploration information for a selected site is paramount. The importance of foundation exploration phase cannot be overemphasized. Responsible geotechnical personnel must be assigned with this task.
- 2. Several ground improvement methods are usually adopted as a combination to guarantee an adequate foundation for new bridges. The most common ways that have been using to improve highly compressible foundation soils are preloading the foundation soils and excavation and replacement. Some DOTs, such as Iowa

DOT and TxDOY, have implemented guidelines on foundation soils treatment. However, the KYTC has not given a manual that will guide designers and constructors how to carry out different ground improvement methods for a particular field situation.

- 3. The process of preloading and precompression the foundation soils usually spans a long time period. Many districts reported that they are not willing to accommodate the preloading and/or precompression periods since this process may lead to construction delay and drive initial construction costs higher.
- 4. Using the predictive models, if the approach settlement for a constructed bridge was classified as severe due to the problem of foundation soils. Two easy and reliable alternatives are proposed when situations do arise that the foundation soils are not adequate. One is to reduce the loads applied to the foundation, and the other method is to improve the properties of the foundation soil by grouting chemical.

5.2 Embankment Backfill Material

Consensus of opinion that high quality granular engineered fill would influence the serviceability of the embankment, in the aspects of slope stability, compression, consolidation, or bearing capacity issues, has been reached. White et al. (2005) suggested that the embankment fill material should have these following properties:

- being easily compacted,
- not time-dependent,
- not sensitive to moisture,
- providing good drainage,

- erosion resistance, and
- shear resistance.

Hoppe (1999) summarized the embankment material specifications and lift thickness and percent compaction requirements from various DOTs as shown in Table 5.3 and Table 5.4, respectively.

Table 5.3 Embankment material specifications (Hoppe, 1999)

State	Same/Different from regular embankment	% passing 75mm (No. 200 sieve)	Miscellaneous
AL	Same		A-1 to A-7
AZ	Different		
CA		<4	Compacted pervious material
CT	Different	<5	Pervious material
DE	Different		Borrow type C
FL	Same		A-1, A-2-4 through A-2-7, A-4, A-5, A-6,
	Sume		A-7 (LL<50)
GA	Same		GA Class I, II or III
ID			A yielding material
IL	Different		Porous, granular
IN	Different	<8	
IO	Different		Granular; can use Geogrid
KS			Can use granular, flowable or light
Ko			weight
KY		<10	Granular
LA			Granular
ME	Different	<20	Granular borrow
MA	Different	<10	Gravel borrow type B, M1.03.0

			Only top 0.9 m (3 ft) are different
MI	Different	<7	(granular material
			Class II)
MN		<10	Fairly clean granular
МО			Approved material
MS	Different		Sandy or loamy, non-plastic
MT	Different	<4	Pervious
NE			Granular
NV	Different		Granular
NH	Same	<12	
NJ	Different	<8	Porous fill (Soil Aggregate I-9)
NM	Same		
NY		<15	<30% Magnesium Sulfate loss
ND	Different		Graded mix of gravel and sand
ОН	Same		Can use granular material
OK	Different		Granular just next to backwall
OR	Different		Better material
SC	Same		
SD	Varies		Different for integral; same for
שנ	varies		conventional
TX	Same		
VT	Same		Granular
VA	Same		Pervious backfill
WA			Gravel borrow
WI	Different	<15	Granular
WY	Different		Fabric reinforced

Table 5.4 Lift thickness and percent compaction requirements (Hoppe, 1999)

	Lift	0,	
State	Thickness, mm(inch)	% Compaction	Miscellaneous
AL	203(8)	95	
AZ	203(8)	100	
CA	203(8)	95	For top 0.76 m (2.5 ft)
CT	152(6)	100	Compacted lift indicated
DE	203(8)	95	
FL	203(8)	100	
GA		100	
ID	203(8)	95	
IL	203(8)	95	For top, remainder varies with embankment height
IN	203(8)	95	
IO	203(8)	None	One roller pass per inch thickness
KS	203(8)	90	
KY	152(6)	95	Compacted lift indicated; Moisture = +2% or -4% of optimum
LA	305(12)	95	
ME	203(8)		At or near optimum moisture
MD	152(6)	97	For top 0.30 m (1ft), remainder is 92%
MA	152(6)	95	
MI	230(9)	95	
MN	203(8)	95	
МО	203(8)	95	
MS	203(8)		
MT	152(6)	95	At or near optimum moisture
NE		95	

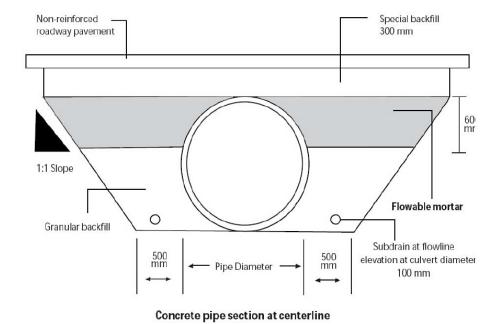
NV		95	
NH	305(12)	98	
NJ	305(12)	95	
NY	152(6)	95	Compacted lift indicated
ND	152(6)		
ОН	152(6)		
OK	152(6)	95	
OR	203(8)	95	For top 0.91 m (3ft), remainder is 90%
SC	203(8)	95	
SD	203-305(8-12)	97	0.20 m (8 inch) for embankment, 0.30 m (12 inch) for bridge end backfill
TX	305(12)	None	
VT	203(8)	90	
VA	203(8)	95	+ or – 20% of optimum moisture
WA	102(4)	95	Top 0.61 m (2 ft), remainder is 0.20 m (8 inch)
WI	203(8)	95	Top 1.82 m (6 ft and within 60 m (200 ft), remainder is 90%
WY	305(12)		Use reinforced geotextiles layers

From the table of embankment material specifications, 49 percent of the DOTs use more rigorous material specifications for an approach fill than for a regular highway embankment fill. From Table 5.4, it can be drawn that a 95 percent of the standard proctor test compaction condition is generally specified for the compaction of approach fill. Since the embankment must provide a smooth transition between the roadway and the bridge, KYTC Structural Design Manual specifies the standards for design and construction considerations both in materials quality requirements and compaction specifications on the title sheet: Special Provision 69, "Embankment at Bridge End Bent

Structures," and Standard Drawings RGX-100 and RGX-105, "Treatment of Embankment at Bridge End-Bent Structures." In Kentucky, granular embankment is usually adopted except that special construction methods are specified when granular embankment materials are erodible or unstable.

Apart from the selection of embankment backfill material, precompression technique in embankment construction is cited by most bridge engineers in interviews as one of another important methods to minimize potential of settlement and lateral movement development in the approach embankments. The precompression in embankment construction is a process in which the weight of embankment will be considered as a load inducing the consolidation settlement and completing the process prior to the beginning of actual pavement or roadway construction (Puppala, 2009). Similar with the precompression method for foundation soils, this method may lead to delay, even up to one year, in most of the cases. Hence a reasonable schedule considering this step/process is necessary so as to allow embankment settlement prior to roadway construction before the placement of approach pavement (Cotton et al., 1987).

Another effective way, cited most by districts, of solving the excessive approach settlement is the use of flowable fills. The flowable fill has other common names, such as unshrinkable fill, controlled density fill, flowable mortar, flowable fill, plastic soil-cement, and soil-cement slurry (Du et al., 2006). Flowable fill is a low-strength mixing concrete used as a backfill behind the abutment wall to reduce the possibility of approach settlements near the surface, resulting from the compression of the backfill itself (Abu-Hejleh et al., 2006). Folliard et al. (2008) pointed out that the fluidity of flowable fill makes it a rapid and efficient backfilling material. This material could fill voids without



the need of any compaction, thus making the embankment as a whole uncompressible. The low-strength mixing concrete has been used by several districts in Kentucky and showed a good performance of preventing erosion of the backfill and enhancing the constructability of the fill behind the walls and its surrounding areas. Another advantage of this method is time-consuming (Snethen and Benson, 1998). This method is greatly appropriate for the bridge projects with urgent construction schedules. The interviewees also stated that this method is an expensive construction practice. In certain field and construction scenarios, the use of this practice would drive a higher construction cost. However, the benefits obtained by less approach settlement problems can balance the increased construction cost. Although flowable fill are widely used in Kentucky, no material requirements have been specified by KYTC. Various districts usually employ this method based on their experience. Colorado DOT provides exact specifications, on the material requirements for flowable fill. It stipulates the maximum lift thickness for flowable fill material is 3 ft and a placement of additional layers is not permitted until the flowable fill has lost sufficient moisture to be walked on without indenting more than 2 inches. Additionally Colorado DOT specifies that the flowable fill does not need any vibration because the vibration may stiffen the flowable fill by allowing the setting to occur faster in the field. The material requirements for flowable fill by Colorado DOT is shown in Table 5.5 as a reference for Kentucky use. In Iowa, the flowable fill has been frequently used as a placement under the existing bridges. Smadi (2001) suggested a flowable mortar that could be easily applied due to several advantages: fluidity, durability, less frequent maintenance, and easy excavation. Details of flowable mortar that are used by Iowa DOT are illustrated in Figure 5.1.

Table 5.5 Material requirements for flowable fill by Colorado DOT

Ingredient	Lb/C.Y.
Cement	50
Water	325 (or as needed)
Coarse aggregate (AASHTO No.57 or 67)	1700
Fine aggregate (AASHTO M6)	1845

Note: Illustration is not to scale.

Figure 5.1 The flowable mortar used under a roadway pavement (Smadi, 2001)

When the predictive models are used to evaluate the approach settlement for a new bridge as severe, a type of technique or a combination of backfill selection, precompression technique, and flowable fills can be employed to solve the problem of the excessive settlements induced by the embankment. If the predicted approach settlement for an existing bridge is severe, the technique of flowable fill is also an effective way of solving

the excessive approach settlement that has been demonstrated by different districts. A manual on flowable fill design and construction is supposed to be developed by KYTC to guide the employment of flowable fill.

5.3 Approach Slab

The use of approach slabs is one of the most popular approach settlement abatement techniques. The bridge approach slab is a part of a bridge that rests on the abutment at one end and on the embankment or a sleeper slab on the other end (Wahls, 1990). The problem with approach slabs is that the voids beneath the approach slab are formed when approach settlement occurs. If the slab is not designed with enough reinforcement to support the unsupported span length, cracking or complete failures may lead to the approach impassable to traffic (Dupont and Allen, 2002).

A survey on over 131 bridges in Texas conducted by James et al. (1991) found that the bridges with flexible pavement had a smoother transition than those with rigid pavement. Another survey based on bridges in South Carolina (Pierce at al., 2001) showed that the approach slab with asphalt overlays tend to increase surface roughness. Most state agencies specify that the use of approach slabs is only an option, not required as a must. Although approach slabs are widely used nationwide, some state agencies (Kentucky and Marryland) argue that the use of approach slabs cannot minimize the approach settlement that will finally develop while increase the construction cost. Although, the use of approach slabs is an expensive construction practice, the analysis in chapter four indicates that the use of approach slabs is still a practical alternative in certain field and construction scenarios where the use of such practice justifies the higher costs.

The results from the Chi-square tests and the effective ratio prove that the approach slab use has a positive impact on alleviating bump issues caused by differential settlement. However, it does not equal that a bump caused by differential settlement could be eliminated by using approach slabs, and approach slabs should be adopted to every bridge by DOTs. Since the bump problem caused by differential settlement is the responsibility of DOTs, which operate under a certain budget, the cost of any methods for eliminating or minimizing this problem is a significant factor. Many solutions to this problem from design, construction, and maintenance have been proposed by DOTs, however, the total cost of approach slab and its life-cycle maintenance must not exceed the total cost of flexible approach and its life-cycle maintenance. A new approach slab is usually designed to last longer than 20 years with a cost range from \$5,000 to \$10,000 (Dupont and Allen, 2002), which is much more expensive than a flexible approach; while no statistics have demonstrated that the life-cycle maintenance of an approach slab is much lower than maintenance cost of a flexible approach during its service life. If a regular asphalt wedge tapering the gradient change to return a smooth transition cannot fix an improper approach slab, replacement of the slab is required. Dupont and Allen (2002) also concluded that the replacement of an approach slab may have a cost over \$10,000. In an effort to figure out the low usage rate of approach slabs in Kentucky, district interviews with local bridge engineers and maintenance personnel from five districts (one, three, five, eleven, and twelve) were conducted. The feedback is summarized as:

- KYTC specifies the use of approach slabs as directed by the project manager.
- Approach slab use varies dramatically among districts. District three and five have used approach slabs as a prevention technique for minimizing deferential

settlement, while the other three districts lag behind. Besides approach slabs, sleep slabs are usually placed transversally under approach slabs to disperse the load transmitted to the embankment. Good performance of approach slabs has been perceived in district three. District five indicated that approach slabs were used for most bridges two decades ago, but no distinct effect had been detected and slab use was abandoned due to high cost.

- The performance of the approach slabs depends on a series of factors including approach slab dimensions, steel reinforcement, use of a sleeper slab, and type of connection between the approach slab and the bridge. The mechanism that affects the performance of approach slabs is complex, and no specific manuals for approach slab have been established in Kentucky to specify some design or construction issues, such as joint, length, vertical place, reinforcement, etc.
- Most districts quote high construction cost as the most significant factor influencing the wide use of approach slabs.
- Approach slab use can be adopted as an effective measure for differential
 settlement problems, but it is not a panacea and other methods also can be used to
 mitigate this problem, such as embankment fill, compaction, drainage, etc.
- No maintenance record from Kentucky or other states has proven life-cycle maintenance cost for approach slabs are lower than flexible approaches.

5.4 Abutments

Many abutment designs exist and different abutment types have been tried on bridges throughout the United States, however, a consensus has not been reached on the best type of abutment to minimize and/or eliminate the bump problem caused by approach

settlement. Generally there are two types of abutments that are usually adopted widely by various DOTs: one-integral (conventional) and integral type. The non-integral or conventional type of bridge abutments (Figure 5.2) have bearing connections and expansion joints to provide the superstructures with a certain amount of lateral movement between the abutment and the bridge deck (Wahls, 1990). The integral bridge abutment type (Figure 5.3) was developed in order to eliminate the use of bearing plates and to reduce potential maintenance problems (Horvath, 2000). The integral abutment is a stub abutment connected to the bridge superstructure tightly without any expansion joints (Wahls, 1990). Both non-integral abutments and integral abutments are commonly employed by many state transportation agencies including Kentucky.

In chapter three, the abutment type is divided into three categories: closed, spill-through, and perched. Generally, closed and spill-through abutments fall into the category of non-integral abutments, while perched abutments can be classified as non-integral or integral abutments. In the chapter of data analysis, there is no significant association between abutment type and approach settlement levels. However, several studies have shown that the type of bridge abutments plays an important role in the form of approach settlement. Pierce et al. (2001) concluded that the bridge approaches with integral abutments tend to provide a smoother surface than the bridges with non-integral abutments. Another study (Wahls, 1990) reported a problem related to cracking and bulking at the approach pavement due to a lateral cyclic movement of the abutment from thermal movement induced stresses at the bridge decks. The biggest problem for integral abutments is the lateral movements. The bridge superstructure will be expanded and contracted by seasonal air temperature fluctuations because of concrete thermal strain properties.

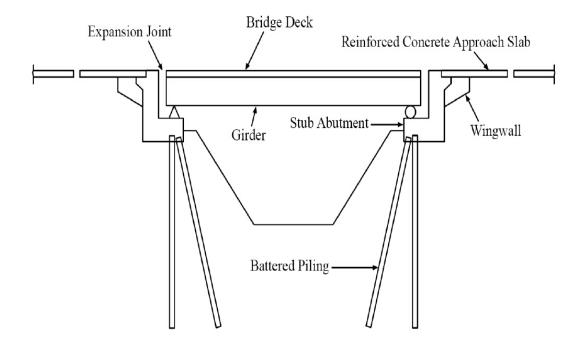


Figure 5.2 Simplified cross section of non-integral abutment bridge (Greimann et al., 1987; White et al., 2005)

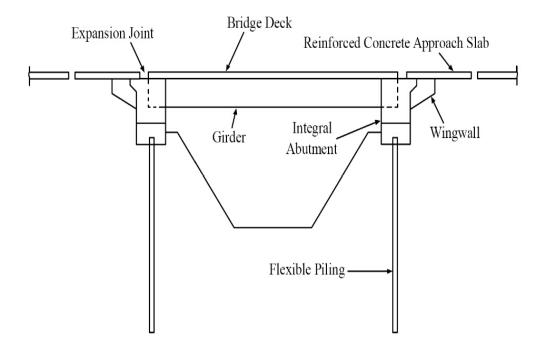


Figure 5.3 Simplified cross section of integral abutment bridge (Greimann et al., 1987; White et al., 2005)

According to the interview with bridge engineers from various districts, abutments supported on pile bent (perched) are generally more economical than spill-through (open column) abutments on spread footings. They usually adopt the pile bent abutments first when there is a choice between the two types of abutment. When non-integral abutments are necessary, piles that resist horizontal thrust by battering the front row of piles 1 to 3 are needed. For new bridges, the structural design manual of KYTC suggests that an integral abutment is preferable than non-integral abutments, and backwalls and expansion joints are recommended to be constructed for pile bent abutments. In addition, different abutments have different requirements for embankment backfill in design and construction in Kentucky.

5.5 Drainage

Approach drainage is another key factor that influence the occurrence of bump caused by approach settlement at the end of bridges. Water collected on the road surface and bridge pavement can flow into the underlying fill materials due to ineffective seals at the joins or cracks between the bridge approach and the abutments, and this infiltrated water can do significantly damage to the bridge approach. For bridge without approach slabs, the seeped water will immediately induce settlement, causing a bump. For bridges even with approach slabs, erosion can amplify the development of voids caused by compression of backfill and lateral deformations (Dupont and Allen, 2002). In this sense, the design of bridge approaches has to be incorporated with an efficient drainage system (Abu-Hejleh et al., 2006). Dupont and Allen (2002) also pointed out that the construction costs added to incorporate a good drainage system are not high when compared to the expensive maintenance costs that they might experience during the service life of the bridge.

Therefore, the significance of designing bridge approaches with effective seals and good drainage conditions cannot be overemphasized.

In the last chapter, drainage design cannot be treated as a quantitative or qualitative variable included in the predictive models due to a fact that it is difficult to evaluate the performance of drainage plan for a bridge based on very limited record on this information in Kentucky. Also it is too simple to consider drainage as a binary variable (considered drainage design or not) because most bridges have considered drainage design. Thus this section mainly summarizes the current practices used by KYTC and other transportation agencies.

Generally, bridge approach must include both surface and subsurface drainage designs. For surface drainage design, Briaud et al. (1997) introduced a way of designing wingwalls curb-to-curb that could direct the water away from the bridge joints (Figure 5.4). For subsurface drainage design, a method that has been considered by most DOTs is the use of porous backfill material or limiting the percentage of fine particles in the fill material to reduce material plasticity and enhance drainage properties. Different layers of granular materials should be arranged with requirements in sequence and thickness in order to prevent water exiting the wall face and causing erosion. Furthermore, outlets should be installed to discharge of seepage away from the reinforced soil structure. Abu-Hejleh et al. suggested a drainage system by using mechanically stabilized earth (MSE) walls (Figure 5.5). Another subsurface drainage design introduced by Nassif (2002) is to construct a layer of filter material before placement of the backfill and then install perforated pipes at the bottom to discharge the collected water (Figure 5.6).

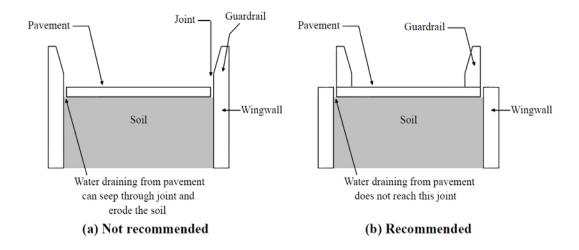


Figure 5.4 Approach slab joint details at pavement edge (Briaud et al., 1997)

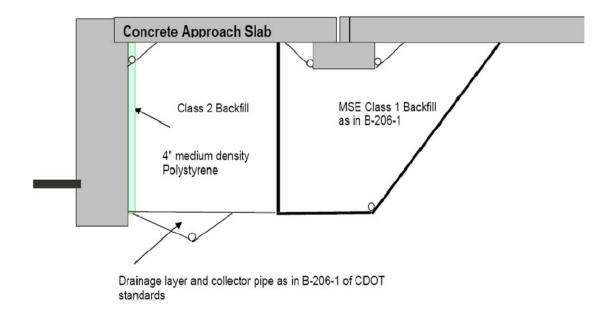


Figure 5.5 Mechanically stabilized earth (MSE) walls system under sleeper slab (Abu-Hejleh et al., 2006)

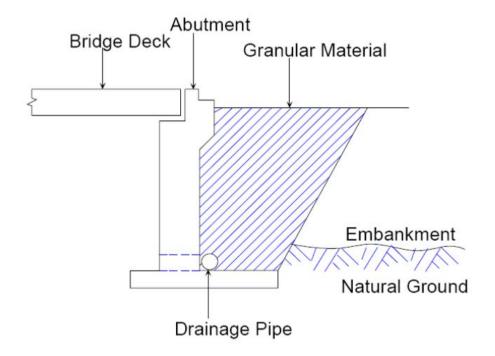


Figure 5.6 Drainage layer of granular material and collector pipe (Nassif, 2002)

Based on the recommendations reported in the literature, the techniques or measures to improve drainage conditions include:

- use of porous backfill material,
- make side slopes flatter,
- use of a curb-to-curb design for erosion control and effective drainage of water away from the bridge structure and approach slab system (Figure 5.4),
- place drains at the back and/or low points of the embankment backfill in order to discharge groundwater,
- use of a large diameter surface drain and gutter system in the shoulder of the approach slab for bridges with approach slabs,
- use of a geo-composite vertical drainage system around the embankments,
- plastic drainpipes, weep holes in the abutments;

- use of a thick layer of tire chips as an elastic zone behind the abutment with a high capacity of drainage,
- use of interceptor drains on the back slope,
- perform periodic maintenance;
- mechanically stabilized earth (MSE) structures (Figure 5.5),
- construct a layer of filter material before placement of the backfill and then install

According to a review conducted by White et al. (2005), there main variations of drainage system were adopted across the nationwide: (1) porous backfill around a perforated drain pipe; (2) geotextiles wrapped around the porous fill; and (3) vertical geocomposite drainage system (Figures 5.7 to 5.10). From this study, approximately 14 out of 16 states have used a combination of two or more of the above three methods to increase the drainage efficiency (Table 5.6).

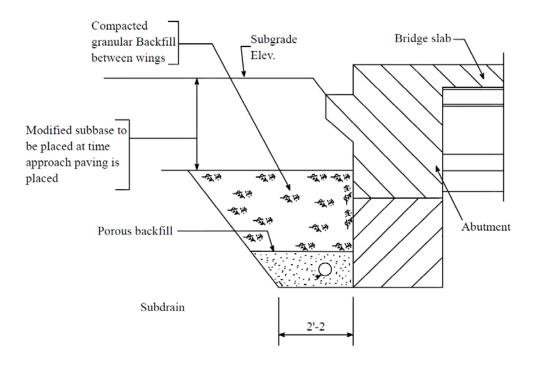


Figure 5.7 Schematic of porous fill surrounding subdrain (Iowa DOT, 2005)

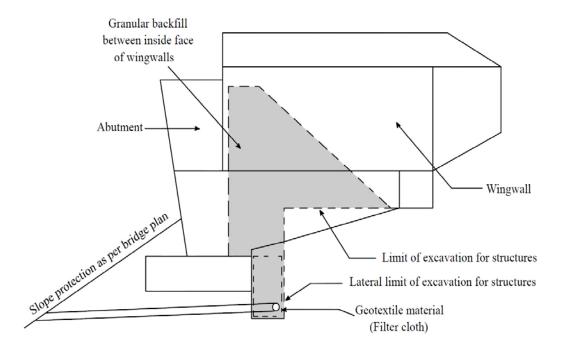


Figure 5.8 Schematic of granular backfill wrapped with geotextile filter material (Wisconsin DOT, 2003)

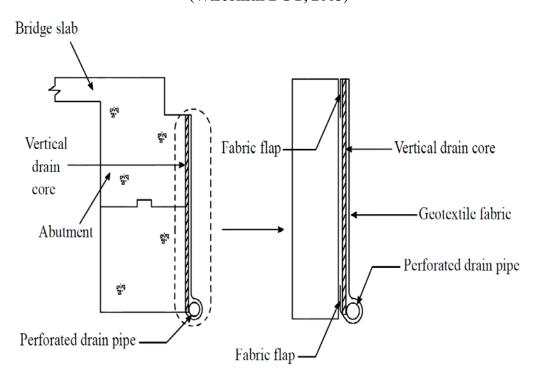


Figure 5.9 Schematic of geocomposite vertical drain wrapped with filter fabric (Missouri DOT, 2005)

Table 5.6 Drainage method used by various states (White et al., 2005)

State	Porous Fill	Geotextile	Geocomposite Drainage System
Iowa	X	-	-
California	X	X	X
Colorado	-	X	X
Indiana	X	X	-
Louisiana	X	X	X
Missouri	-	X	X
Nebraska	-	X	X
New Jersey	X	X	X
New York	-	-	X
North Carolina	X	X	-
Oklahoma	X	X	-
Oregon	X	X	-
Tennessee	X	X	-
Texas	X	X	-
Washington	X	-	-
Wisconsin	X	X	-

By talking with the local bridge engineers in various districts, most engineers cited that the use of porous backfill behind the abutment would enhance the drainage capacity and would reduce the erosion around the abutment. In Kentucky, specifications from AASHTO govern the requirements of material type and use. Several districts sometimes adopt granular backfill wrapped with geotextile as drainage systems. Currently, no special provisions related to the design of bridge approach drainage are provided by KYTC.

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

A bridge approach is usually built to provide a smooth and safe transition for vehicles from the roadway pavement to the bridge structure. However, differential settlement between the roadway pavement resting on embankment fill and the bridge abutment built on more rigid foundation often creates a bump in the roadway. In the United States, the highway agencies have been spending considerable amounts of their maintenance budgets to minimize or eliminate the bump problems caused by approach settlement at bridge ends. Moreover the maintenance work usually results in traffic delays and unsafe ride for motorists in heavy traffic areas. Prediction of bridge approach settlement can play an important role in selecting proper design, construction, and maintenance techniques and/or measures. On the one hand, bridge designers could use a predictive model to predict the approach settlement level based on foundation, approach, embankment, and other bridge characteristics for a new bridge. And then apply corresponding techniques and/or measures in the preliminary phase to prevent or minimize the settlement problems that may occur in the future. On the other hand, the bridge maintenance engineers could use a predictive model to evaluate the performance of an approach for an existing bridge based on the current situations in use such as approach year, geographic regions, Average Daily Traffic (ADT), and approach type. And then implement effective maintenance activities for correcting distressed approaches.

A study based on statistical methods was carried out to identify the predominant factors that may significantly influence the formation of the approach settlement and to figure

out how to develop a model for predicting approach settlement level by quantifying these count or categorical data as model inputs. Two samples were obtained by different selection methods: sample one with 87 bridges was formed by a survey of local bridge engineers from each transportation district, and sample two was randomly generated with 600 bridges from an internal network server "Pontis" which was used for storing the inspection history of approaches of most of the bridges in Kentucky. Previous studies usually adopted a micro method to evaluate the approach performance based on observed approach settlement. A macro method based on a combination of maintenance times, maintenance measures, and observed settlement was used to classify the differential settlement scale as minimal, moderate, and severe, corresponding to the approach performance status good, fair, and poor. Ten independent variables that may have an important contribution to the formation of approach settlement were identified. The independent variables of interest both consist of count data and categorical (ordinal and nominal) variables. The outcome (response) variable is ternary: minimal, moderate, or severe, and it is assumed as ordinal under the assumption that the levels of approach settlement have a natural ordering (low to high), but the distances between adjacent levels are not consistent. If the ordinal logistic analyses violates this assumption, a less restrictive method of multinomial logistic method would be adopted. Chi-square test was employed first to identify whether there is an association between each predictor and approach settlement levels. Then both methods of ordinal logistic regression and multinomial logistic regression were used to develop the comprehensive models to predict approach settlement levels considering all predictors. Two predictive models were developed to estimate the probability of occurrence of each of the three settlement levels

as well as to estimate the odds of severity choice as a function of the covariates and to express the results in terms of odds ratios for severity choice given bridge characteristics. The users can select one or two models to predict the approach settlement level for a new bridge or an existing bridge based on different purposes.

Five transportation districts were visited to obtain the current practices that have been using for alleviating the bump problems caused by approach settlement. A base of techniques and measures regarding bridge approaches in design, construction, and maintenance was developed for providing bridge engineers the prescriptive correction measures that could be applied to predicted differential settlement. Techniques and measures in the terms of foundation soil, embankment backfill material, approach slab, abutments, and drainage were collected and summarized.

6.2 Conclusions

The primary objective was met through the statistical analyses performed that predict the approach settlement levels for a new or an existing bridge given bridge characteristics in terms of approach, embankment, abutment, traffic volume, and foundation. From the previous results, there are several key conclusions that can be made:

It is imperative that the approach system be treated as a stand-alone design
objective in Kentucky. From the literature review, several states, such as Iowa,
Texas, Wisconsin, have initiated a design manual regarding approach design.
From the district interviews in Kentucky, most of issues related to approach
design are directed by project manager. Maintenance techniques or measures are
in a great variation among districts when excessive approach settlement occurs.

- 2. It is appropriate to use the macro method based on a combination of maintenance times, maintenance measures, and observed settlement to classify the differential settlement level. Observed settlements are not necessarily needed to evaluate the performance of approaches if a record regarding approach maintenance activates exists.
- A legible, accurate, and accessible record keeping system regarding inspection/maintenance of bridge approaches is an effective and straightforward way of discovering and managing bridge approaches when excessive approach settlements occurs.
- 4. Sample one: The results from logistic regression show that approach age, transportation districts, and foundation soil depth are the three most important factors influencing the formation of approach settlement. The probability of being in a higher settlement level will decrease as the approach age increases. District one, district ten, and district eleven behave better than other districts in the treatment of differential settlement at bridge ends. In addition, the probability of being in a higher settlement level will decrease as foundation soil depth for a bridge increases.
- 5. Sample two: Transportation district, approach age, average daily traffic, and approach type are the four most important factors that contribute to the development of approach settlement. District one, district three, and district ten behave better by comparing to other districts in the treatment of differential settlement at bridge ends. There is a positive correlation between AGE and SEVERITY, which implies that the probability of being in a higher level of

approach settlement will increase as the bridge age increases while holding all other predictors constant. As average daily traffic for an approach increases, the probability of being in a higher settlement level will increase. Furthermore, flexible approaches tend to have a higher probability of being in a higher settlement level than rigid approaches.

- 6. There is a significant association between approach type and approach settlement levels. Concerning fewer approach slabs are used in Kentucky, the use of approach slabs was demonstrated to be useful on mitigating bump problem based on the performance of approach slabs that have been constructed in Kentucky. The use of approach slabs could enhance the performance of approaches as transitions between roadway and the bridge. However, the effectiveness is not significant because the effective ratio is slightly larger than 1.
- 7. The variation trends of the predicted probability of minimal versus the statistically significant predictors met well with the logistic regression results for sample one. The probability of being in the settlement level of minimal will increase as approach age increases. District one, ten, and eleven show a higher probability of being in the settlement level of minimal than other districts. The probability of being in the settlement level of minimal will increase at first as the foundation soil depth increase by 25 feet and then decrease as the foundation soil depth continues to increase.
- 8. The variation trends of the predicted probability of minimal versus the statistically significant predictors met well with the logistic regression results for sample two.

 District one, three, and ten show a higher probability of being in the settlement

level of minimal than other districts. The probability of being in the settlement level of minimal will decrease as approach age increases. The probability of being in the settlement level of minimal will decrease as the average daily traffic increases. Rigid approaches tend to have a higher probability of experiencing settlement levels of minimal than flexible approaches.

- 9. The most common ways that have been using by Kentucky to improve highly compressible foundation soils are preloading the foundation soils and excavation and replacement. Two easy and reliable alternatives are proposed when situations do arise that the foundation soils are not adequate. One is to reduce the loads applied to the foundation, and the other method is to improve the properties of the foundation soil by grouting chemical. KYTC has not given a manual that will guide designers and constructors how to carry out different ground improvement methods for a particular field situation.
- 10. Many districts reported that they are not willing to accommodate the preloading and/or precompression periods since this process may lead to construction delay and drive initial construction costs higher.
- 11. Precompression technique in embankment construction is reported as a successful practice by most bridge engineers. Another effective way of solving the excessive approach settlement is the use of flowable fills.
- 12. The use of Approach slab varies dramatically among districts. No specific manuals for approach slab have been established in Kentucky to specify some design and/or construction issues. Most districts quote high construction cost as the most significant factor influencing the wide use of approach slabs. No

- maintenance record from Kentucky or other states has proven life-cycle maintenance cost for approach slabs are lower than flexible approaches.
- 13. Abutments supported on pile bent (perched) are generally more economical than spill-through (open column) abutments on spread footings. KYTC suggests that an integral abutment is preferable than non-integral abutments.
- 14. The use of porous backfill behind the abutment would enhance the drainage capacity and would reduce the erosion around the abutment. Several districts sometimes adopt granular backfill wrapped with geotextile as drainage systems. Currently, no special provisions related to the design of bridge approach drainage are provided by KYTC.

6.3 Recommendations for Future Research

This research is limited in the construction engineering body of knowledge, which provides a great opportunity for growth in some areas such as structural engineering, transportation engineering, and statistics, both in depth and breadth. In view of the present study, there are several recommendations for additional research.

- A sample with more bridges obtained by surveying bridge engineers should be used for logistic regression. In logistic regression, if the sample size is small, it may lead to an unstable model.
- 2. Other lurking variables, such as temperature cycle, connection between the approach and the bridge, compressibility characteristics of embankment, and drainage design of approaches, may be included in the present models.
- 3. The effect of drainage on the formation of approach settlement should be studied in depth based on bridge characteristics in Kentucky. A consensus has been

- reached nationwide that drainage plays a very significant role in the development of differential settlements at bridge ends.
- 4. The developed models in this research are based on judgment of local bridge engineers or inspection record from KYTC. Field visits should be conducted to verify the results from the predictive models. The true approach settlement should be measured to compare with the results from the models. If there is a database for the record of the observed settlement for most of the bridges in Kentucky, other statistical methods can be used to predict the approach settlement in inches.
- Predictive models are only built on the bridges from Kentucky, bridges from other states can be included to develop a more comprehensive use nationwide by this method.
- 6. Explore the potential of using the characteristics on construction of abutment and backfill as inputs to develop a model. Interviews with the construction engineers are recommended as well as frequent visits to observe the abutment and backfill construction.
- 7. Some information on foundation soil used for developing the models are not very accurate. Field tests need to be carried out to investigate the foundation soils when this information cannot be obtained from bridge design plans.

APPENDICES

Appendix A: Summary of Major Studies on Bridge Approach Settlement

No.	Author, Institution & Time	Title	Main Works & Key Findings
1	Elizabeth; TxDOT; 2012	The Bump at the End of the Railway Bridge	 Investigate the complete track response resulting from a bump/dip Quantify an acceptable slope for track geometry under freight traffic Examine the influence of various design components on track response for the bump/dip Develop a prototype track transition solution and assist in analyzing the performance of a full-scale field test. A 4-D dynamic numerical model was developed to simulate a train passing over a bridge approach system using the program LS-DYNA The resulting impact forces, track deflection, ballast and subgrade pressures that were generated by the bump/dip were then evaluated. Based on the survey and simulation results, an acceptable slope can be defined.

			Literature review of causes of
			bridge approach settlement, current
			mitigation methods and
			maintenance technique. Field test
			for some selected bridges.
			Introduction of backfill
			specification, field instrumentation
			plan
			The movements of the approach
			fills that have granular foundation
			soils (Hemlock and Cranberry) and
	Ghorbanpoor, Al; Koutnik, Therese Ellen; Helwany, Sam; Wisconsin DOT; 2007		less than 5 to 7 feet of fill were
		Evaluation of	insignificant over five years
		bridge approach settlement mitigation methods	compared with the movements of
2			the approach fills (Western and
			Beloit) with cohesive foundation
			soils over two years
			Embankment side slopes that settle
			and slough (Western and Beloit)
			resulted in erosion and/or
			movement of backfill material
			The cost of flowable fill is greater
			than geosynthetic reinforced fill
			for small quantity jobs
			Laboratory and field tests need to
			be carried out to investigate the
			effectiveness of using hydraulic
			fills as a method for alleviating
			bridge approach settlements
			<u> </u>

			. Void days lamont for the 1. C11
			Void development from backfill
			collapse following saturation,
			severe backfill erosion, poor
			surface and subsurface water
			management, and poor
			construction practices mainly
			contribute to settlement problems
			of the approach pavements of
			bridges
			 Erosion can lead to problems
			including: exposure of the H-piles,
			failure of the slope protection
	White et al; Iowa DOT; 2007	"Underlying" Causes for Settlement of Bridge Approach Pavement Systems	cover, severe faulting in the
			approach pavement, and loss of
			backfill around subdrain elements
3			 Problems in void development,
			water management, and pavement
			roughness were generally more
			pronounced with integral abutment
			bridges than non-integral
			Backfill materials should be placed
			outside the range of bulking
			moisture contents and should be
			less susceptible to erosion
			The surface water management
			system should be designed to shed
			water to the base of the
			embankment and the subsurface
			drainage system to provide an easy
			pathway for infiltrating water to
			escape
			-

4	Hoppe; Virginia DOT; 2006	Field Measurements on Skewed Semi- Integral Bridge with Elastic	Data obtained by monitoring earth pressure cells, load cells, and strain gages would be useful for future
		Inclusion: Instrumentation Report	endeavors
5	Abu-Hejleh et al; Colorado DOT; 2006	Flowfill and MSE bridge approaches: Performance, Cost and Recommendations for Improvements	 Flowfill is recommended in certain difficult field conditions (e.g., to fill and close up voids, in areas where compaction is difficult, easier to place around an embankment slope) The use of the MSE or GRS abutment system is the best system to alleviate the approach bridge bump problem The high quality backfill materials should be placed under the sleeper slab The length of the approach slab should be related to the depth of the abutment wall and the magnitude of the projected post-construction settlements The drainage system is very important to collect and drain any surface water before it reaches and softens the soil layers located beneath or around the sleeper slab

6	Lenke; New Mexico DOT; 2006	Settlement Issues - Bridge Approach Slabs	 MSE walls have fewer problems with approach slab settlement issues than other types of bridge abutment systems An elastic inclusion consisting of a
7	Hoppe; Virginia Transportation Center (TRC)/Virginia DOT; 2005	Field Study of Integral Backwall with Elastic Inclusion	layer of elasticized Expanded Polystylene (EPS) 0.25 m significantly reduced earth pressures and approach settlements at the semi-integral bridge The well-compacted select backfill material at bridge approaches is necessary Short approach slabs could be sufficient to provide a grade transition Shorter approach slabs would be easier for the superstructure to push and pull during cyclic movements, and would exert less stress on the backwall if they settle Thermally induced lateral movements of the superstructure may not be equal at both abutments

8	Jayawickrama et al.; TxDOT; 2005	Water intrusion in base/subgrade material at bridge ends	 Saturated base/subgrade material at the end of bridge could be a major problem Use of geotextiles fabric beneath the joints to avoid loss of material by erosion Approach slab stabilization to control void development and cross/slot stitching of approach slabs and concrete pavements for controlling further development of cracks
9	Cai et al.; Louisiana TRC/ LADOT; 2005	Determination of interaction between the bridge concrete approach slab and embankment settlement	 After settlement is increased to a larger value, it no longer affects the performance of slab since approach slab completely loses its contact with soil and becomes a simple beam The developed procedure can be used in designing the approach slab to meet the established deformation requirements Due to over stress of bolts and dowel bars, cracking is seen

10	David White, Sri Sritharan; Iowa DOT; 2005	Identification of the Best Practices for Design, Construction, and Repair of Bridge Approaches	 Void development under the bridge approach is observed within one year of bridge construction, indicating insufficient moisture control/compaction and poor backfill material Water management around the bridge is a major problem at most of the inspected bridges. Several abutment subdrains were observed to be either blocked with soil, dry, indicating no water flow, or collapsed Grouting under the approach slab does not necessarily prevent further settlement or loss of backfill material due to erosion Use a more effective joint sealing system at the joint between road and bridge approach Reduce time-dependent post construction settlements
11	Mekkawy et al.; Iowa DOT; 2005	Simple Design Alternatives to Improve Drainage and Reduce Erosion at Bridge Abutments	• Three alternatives are recommended to improve drainage and alleviate erosion: 1) use geocomposite drain with granular backfill reinforcement, 2) use tire chips behind the bridge abutment, and 3) use porous backfill material

			• Contachnical (acil machanica)
			Geotechnical (soil mechanics)
			techniques can be used to predict
			when the potential for a problem
			exists. The various means of
			reducing the settlement of the
			embankments need to be
			established on a case -by-case
			basis as determined by the design
			interactions between the
			geotechnical engineers and the
	Ronaldo Luna; MoDOT; 2004	Evaluation of	bridge designers
		Bridge Approach	Modern numerical method is used
13		Slabs Performance and Design	to determine the embankment
			settlement and it compared well
			with the general observed
			conditions. The use of typical
			geotechnical data for input
			parameters results in useful but
			relatively large ranges of the
			predicted settlement due to the
			inability of assessing modulus and
			related deformation parameters
			The construction sequence has a
			significant effect on the final
			performance of the embankment
			and bridge approach slab
	1	l .	

14	Seo et al.; TxDOT; 2003	The bump at the end of the bridge: an Investigation	 The compressibility of the soil is contributing to the development of the bump The transition zone of the approach embankment is about 12 m with 80 percent of the maximum settlement occurring in the first 6 m for a uniform load case The size of the sleeper slab and support slab influences the settlement of the slab. The optimum width of both slabs is 1.5
14		end of the bridge:	percent of the maximum settlement occurring in the first 6 m for a uniform load case • The size of the sleeper slab and support slab influences the settlement of the slab. The
15	Arsoy et al.; VTRC/VDOT; 2002	Performance of Piles Supporting Integral Bridges	 Steel H-piles oriented in the weak-axis bending area is a good choice for support integral abutment bridges Pipe Piles will cause higher stress in the abutments than steel H-piles Concrete piles are not a suitable choice. Tension cracks due to cyclic lateral load can reduce their vertical load capacity

			The number one reason for the
		Finite element	bump is the settlement of the
			embankment fill followed by the
		modeling of	loss of fill by erosion
		bridge approach,	The settlement at the bridge
16	Nassif;	transition slabs	approach is worse when the
	NJDOT; 2002	using ABAQUS,	embankment is high and the fill is
		and identifying	clay
		the probable cause	The settlement at the bridge
		of cracking	approach is lessened when an
			approach slab is used and the
			abutment fill is cement stabilized
	Kentucky settlements of		Lowered approach slabs with
		Movements and	asphalt overlays
			Require settlement periods and/or
			surcharges prior to final
			construction
			Design Maintenance plans
			concurrent to construction plans
17		settlements of	Implement specifications for select
- 7		highway bridge	fill adjacent to abutments
	Center (KTC);	approaches	Improve drainage designs on and
	2002		around approached
			Require bridge approach
			warranties
			Reduce the side slope of
			embankments
		 Improve approach slab design 	
ĺ	ĺ	1	

18	Marquart, M.; NDDOT; 2002	Fabric Reinforced Backfill under Approach Slabs	 A bump that is allowed to persist increases the chance of damage to the bridge deck from the dynamic impact of vehicles Damage to the bridge deck can also be caused by snowplows in the winter Integral bridge abutments appear to be a special case where a bump is consistently created resulting from temperature cycles and the associated compression and decompression of the approach fill by the abutment wall
19	Ha and Briaud; TxDOT; 2002	Investigation of settlement at bridge approach slab expansion joint: survey and site investigations	 The number one reason for the bump is the settlement of the embankment fill followed by the loss of fill by erosion The soil near the abutment was weaker and wetter than the soil away from the abutment The soil near the abutment had a relatively high Plasticity Index (PI) for an embankment fill A bump rating number, BR, and a bump index number, BI, are proposed to document the severity of existing bumps and to evaluate the likelihood of developing a bump at a site, respectively

			Conducted visual inspection and			
			quantitative assessment of bridge			
		Investigation into	approach slabs located at 25			
20	Pierce, Charles	improvement of	bridges in 11 counties across South			
20	E; SCDOT;	bridge approaches	Carolina, and assessed the			
	2001	in South Carolina	performance level of bridge			
			approach slabs and determine the			
			rideability of the road-to-bridge			
			transition			
			Eight embankments constructed			
			between 1994 and 2000 were			
			selected for undisturbed field			
			sampling. Two borings were			
			drilled in each embankment and			
	Parsons;	Compaction and	shelby tube samples were collected			
21	Kansas DOT;	settlement of	for testing at regular intervals.			
21		existing	Samples of the cuttings were also			
	2001	embankments	collected for testing. A telephone			
			survey of all state DOTs was			
			conducted to assess current			
			practice with regard to			
			specifications for compaction of			
			fills.			

22	Abu-Hejleh et al.; Colorado DOT; 2001	Results and Recommendations of Forensic Investigation of Three Full-Scale GRS Abutment and Piers in Denver, Colorado	 GRS abutment and piers are practical alternatives used in bridge support GRS should not be used in a scour situation GRS piers are suitable for remote locations, since it can be constructed or repaired by using small construction equipment within a few days Full-width approach slabs are used.
23	Hoppe; VTRC/VDOT; 1999	Guidelines for the use, design, and construction of bridge approach slabs	 Full-width approach slabs are used. fill Placing approach slabs below the road surface facilitates resurfacing operations Drainage system between the top of the approach slab and the surface of the road should be provided Pre-cambering may be employed to compensate differential settlement at bridge approaches resulting from differing foundations beneath the bridge and theroadway

24	Sankar; Louisiana TRC; 1999	Assessment of mitigating embankment settlement with pile-supported approach slabs	• Identified the factors that contribute to total approach settlement in pile supported approach slabs in southeastern Louisiana. The main factor affecting slab settlement is downdrag, or negative skin friction, load imposed on the pile due to the weight of the roadway embankment.
25	Reid et al.; SDDOT; 1999	Use of fabric reinforced soil wall for integral abutment bridge end treatment and investigate the effectiveness of present design	 Voids reduced by using the rubber tire chips behind the integral abutment Cyclic movements do not affect the voids
26	Snethen et al.; Ohio DOT; 1998	Construction of CLSM approach embankment to minimize the bump at the end of the bridge	The use of Control Low-Strength Material (CLSM) as an approach embankment fill material as a simple and cost effective method to reduce the potential for developing the bump at the end of the bridge

			Synthesis on faulted pavements at		
			bridge abutments; Occurrence of		
			pavements faults. Reported causes;		
	Hearn;	Faulted	Mitigation of pavement faults;		
27	7 Colorado pavements at	Observed total settlements;			
	DOT; 1997	bridge abutments	Prediction of total settlements;		
		Differential settlement in bridges;			
			Limits on tolerable settlements for		
			bridges.		
			Identified and described techniques		
			that have been used to alleviate the		
		Settlement of bridge approaches	problem of the bump at the end of		
			_		
	Briaud and		the bridge including the location		
28	Jame; TxDOT;		and cause of settlement and		
20	1997	: (the bump at the	methods used to reduce settlement		
	1997	end of the bridge)	• Types of interaction between		
			various divisions of the DOTs in		
			the design, construction, and		
			maintenance of bridge approaches		
			are addressed		

29	Schaefer and Koch; SDDOT; 1992	Survey done to isolate and determine the mechanisms controlling backfill to reduce void development under bridge	 Thermal induced movements of integral abutments are responsible for void development No problem with the material used as a backfill Voids are not developed due to erosion Cracking is due to loss of support Mud jacking does not affect the formation of voids
		approaches	 Non-integral abutment reduces the problem of voids Maintenance cost increases by using integral abutments
30	Laguros and Zaman; OKDOT;1990	Evaluation of causes of excessive settlements of pavements behind bridge abutments and their remedies	 Settlement problem is due to the absence of drainage Major portion of the settlement occurs within first twenty years Skewed approaches have higher approach settlement than nonskewed approaches Regression techniques were used to develop an empirical relationship between the approach settlement and the causative parameters such as age of the approach, embankment height, traffic volume, and skewness of the approach.

31	Wahls; NCDOT; 1990	Design and construction of bridge approaches and to revise and update the report of KYDOT (1969)	 Bridge approach settlements are caused due to time dependent consolidation of embankment, poor compaction, drainage, and erosion of abutment backfill Lateral creep of foundation soils and movements of the abutment Type of abutment and foundation also affect the performance Differential settlement can be minimized by using shallow foundations
32	Greimann et al.; Iowa DOT; 1987	Pile design and tests for integral abutment bridges due to the effect of temperature changes	 Horizontal displacement had no effect on the vertical load capacity Use of a pre-drilled hole is recommended as a pile construction detail to reduce the pile stresses significantly when horizontal displacements of the pile occur
33	Stewart; Caltrans; 1985	Survey of Highway structure approaches	 Structure approach slab policy Design policies and procedures Structure approach slab design concepts Construction sequence and details for rehabilitation projects

34	Hopkins, KyDOT; 1985	Long term movements of highway bridge approach embankments and pavements by surveying and observation of six bridge sites from 1966 to 1985	 Settlement of bridge approach foundations contributes significantly to settlements of approach pavements Improper compaction, lateral movements, erosion of materials, and secondary compressions are the causes for long-term movement of bridge approaches
35	Greimann et al.; Iowa DOT; 1984	Deign of Piles for Integral Abutment Bridge	 The ultimate load capacity for frictional piles was not affected by lateral displacements of up to 4 in. for Hpiles and up to 2 in. for timber and concrete piles The ultimate load capacity was considerably decreased if lateral displacements greater than 2 in. for end-bearing H- piles
36	DiMillion; WSDOT; 1982	Performance of Highway Bridge Abutments Supported by Spread Footing on Compacted Fill	 Spread footing on compacted fill supporting the bridge abutment is very reliable and inexpensive The superstructure with a spread footing can withstand temperate settlement (1-3 in.) without distress

			Concrete bridge approaches are			
			better than bituminous bridge			
			approaches			
			Progressive failure or creep of the			
			approach is a cause for the			
			development of an approach fault			
		Preliminary	Erosion of soil from abutments			
	survey done on the existing bridges to	contributes to development of				
		defective bridges.				
		bridges to	Traffic is not a cause for the			
		calculate	settlement			
		settlement of	Backfilling around abutments with			
		highway bridge approaches and embankment foundations by	a granular material did not arrest			
	Hopkins;		the development of faulted			
37	KyDOT; 1969		approaches			
	foundations by using special experimental design and		Settlement of the approach			
		foundation and embankment				
		contributes significantly to				
		settlement of bridge approaches				
		construction	and approach pavements			
		features at	Replacing the soft compressible			
		selected bridge	material with rock or compacted			
		sites	material			
			Pre-consolidate using surcharge fill			
			Allow sufficient time for			
			consolidation of the foundation			
			under the load of the embankment			
			Use of vertical sand drains and			
			drainage system			
<u></u>	<u> </u>					

	Longitudinal camber is provided at
	the approaches

Appendix B: Survey of Requesting Bridges with Different Settlement Levels for Comprising Sample One

Survey Designation:

One of the most important tasks of this project is to select bridges and conduct site visits to evaluate "bump" issues at bridge ends based on maintenance information. This survey will serve to help identify and quantify differential settlement at bridge ends throughout the state. The purpose of this survey is to:

- Obtain information regarding the existence of bridges with "bump" issues;
- Identify major causes of differential settlement at bridge ends;
- Evaluate the existing record keeping procedures regarding maintenance of "bump" issues.

1. THANK YOU FOR YOUR ASSISTANCE!

TAT	C	D		1 4
Name	Ω T	Res	n∩n	aent.

Job Title:

E-mail Address:

2. Please list five bridges that you believe have the worst "bump" conditions in your district. (Fill in the information as thoroughly as convenient) Please use the following scale to rank the condition: 1= Major bump, 2= Moderate bump, 3= Minor or no bump.

Bridges	Bridge ID/Number/Mile post	Route	County	Condition	Remarks
Bridge 1					
Bridge 2					

Bridge 3			
Bridge 4			
Bridge 5			

3. In what cases does the "bump" problem appear to be minimized? Please list five bridges that you consider to be in good condition in your district. (Fill in the information as thoroughly as convenient) Please use the following scale to rank the condition: 1= Major bump, 2= Moderate bump, 3= Minor or no bump.

Bridges	Bridge ID/Number/Mile post	Route	County	Condition	Remarks
Bridge 1					
Bridge 2					
Bridge 3					
Bridge 4					
Bridge 5					

4. In what cases does the "bump" problem appear to be moderate? Please list five bridges that you consider to be in moderate condition in your district? Please list five bridges that you consider to be in good condition in your district. (Fill in the information as thoroughly as convenient) Please use the following scale to rank the condition: 1= Major bump, 2= Moderate bump, 3= Minor or no bump.

Bridges	Bridge ID/Number/Mile post	Route	County	Condition	Remarks
Bridge 1					

Bridge 2			
Bridge 3			
Bridge 4			
Bridge 5			

If you have any questions, please call Professor Timothy R. B. Taylor on (859) 323-3680 or contact him on E-mail at tim.taylor@uky.edu. We would appreciate your response by April 1st, 2014

Appendix C: Detailed Data Information of Sample One

Bridge_	Dist	Len	Wi	Арр	AD	AbuT	АррТ	EmbH	FSoilD	Consist	Seve
ID	rict	gth	dth	Age	Т	ype	ype	eight	epth	ency	rity
061B00 099N	11	136	24	4	246 0	3	1	7	21	2	3
056B00 495N	5	.5 .5	66	5	582 00	3	1	32	15	2	2
056B00 489N	5	356 .2	30	5	800	2	1	29	8	2	2
056B00 492N	5	159 .7	24	5	582 00	1	1	17	0	4	2
056B00 494N	5	308	30	5	582 00	3	1	24	17	3	2
049B00 072N	6	889	24	6	122 00	3	2	22	12	3	3
118B00 123N	11	175 .9	40	6	401 0	3	2	18	19	2	3
115B00 065N	4	683	40	8	706	3	2	18	13	3	3
056B00 488N	5	353	60	8	174 00	2	1	18	0	4	2
041B00 062N	6	.6 .6	18	8	296	3	1	5	14	2	2
041B00 065N	6	.5 .5	28	8	393	3	1	18	8	2	3
039B00 048N	6	286 .5	24	8	294 00	3	1	21	14	2	3
041B00 069N	6	450	30	8	244 0	3	1	33	7	2	3

041B00 067N	6	236	24	8	484	3	1	4	21	2	3
041B00 064N	6	234 .7	24	8	393	2	1	3	2	2	3
076B00 111N	7	272	20	8	191 0	3	1	11	8	2	2
105B00 144R	7	482	60	8	176 00	1	2	22	0	4	3
105B00 145R	7	172	16	8	176 00	3	1	6	7	3	3
013B00 082R	10	437	42	8	229 0	3	1	19	21	2	1
013B00 083R	10	567	32	8	361 5	3	1	16	32	3	2
041B00 061N	6	257	18	9	565	3	1	18	11	1	2
079B00 146N	1	296 .9	24	11	224 0	3	2	18	11	3	2
041B00 058N	6	382	30	11	611 0	1	2	42	0	4	3
084B00 051N	7	177	34	11	631	3	1	8	19	3	2
096B00 040N	6	200	56	12	112 00	3	2	17	12	3	2
076B00 105R	7	286 .1	20	12	269 50	3	2	5	12	2	3
045B00 081N	9	272	16	12	590 0	3	1	44	35	3	3
041B00 052N	6	223	16	13	348 0	3	2	0	7	3	1

1											
076B00	7	252	30	13	154	3	1	12	17	1	3
107N		232	30	13	00	,	_		-,	_	3
059B00	6	147	22	14	132	3	2	8	26	2	1
104N	0	4.1	22	14	00	3	2	0	20	2	1
048B00	11	59.	12	1.1	358	1	4	4		4	_
181N	11	1	12	14	0	1	1	4	0	4	2
073B00	1	205	40	15	469	3	2	17	41	3	3
159L	1	203	40	15	5	3	2	17	41	3	3
094B00	6	765	36	16	280	1	1	11	0	4	3
041N	0	.1	30	10	0	1	1	11	U	4	3
070B00	1	57.	14	17	329	3	1	4	8	3	1
076N	1	1	14	17	0	3	1	4	0	3	1
009B00	7	146	24	17	860	1	1	7	0	4	2
068R	,	140	24	17	0	1	_	,		-	۷
048B00	11	329	12	17	238	3	1	7	12	3	3
176N	11	329	12	17	0	3	1	,	12	3	3
060B00	12	54	16	17	671	1	1	6	0	4	3
076N	12	34	10	17	0	1	1	0	0	4	3
056B00	5	402	42	18	135	3	2	25	22	3	2
454R	3	.7	42	10	00	5	2	25	22	3	2
081B00	9	766	60	19	511	3	2	76	52	3	2
067N		.1		13	0	3	_	, ,	32		_
097B00	10	284	40	20	420	3	2	2	40	1	3
116N	10	.1	70	20	0	5	_	_	70	_	,
011B00	7	240	24	22	337	3	2	21	10	3	3
055N	,	240	∠ +	~~	0	J		21	10	,	,
061B00	11	517	48	22	861	3	2	35	31	2	2
095N					0	3	_			_	_
061B00	11	303	26	25	665	2	1	14	22	3	3
091R			_•		0	-	_		_ 		

039B00	6	387	24	26	397	3	1	18	40	2	3
039N 021B00		42.			0						
054N	6	3	16	27	534	1	1	7	0	4	3
068B00 101N	9	294	24	28	290 0	3	1	22	42	2	3
021B00 049N	6	265 .1	24	31	534	3	1	15	50	3	2
041B00 038N	6	146	16	32	398 0	3	1	21	6	3	2
048B00 103N	11	302	24	39	637	3	1	42	22	2	1
048B00 124N	11	130	40	39	602 0	3	1	12	15	3	1
009B00 052L	7	.4	26	40	615 0	1	1	9	0	4	2
048B00 110N	11	369	44	40	595 0	3	1	14	13	3	1
048B00 118N	11	226	48	41	602 0	2	1	12	19	3	2
048B00 117N	11	300	48	41	602 0	2	1	23	12	3	3
067B00 081N	12	358 .9	48	41	919 0	3	1	16	22	2	3
111B00 027R	1	151 .9	42	42	955 0	1	1	12	0	4	2
048B00 114N	11	217	44	42	595 0	2	1	21	21	3	2
048B00 113N	11	208	44	42	595 0	3	1	9	14	3	3

027000		200			100						
037B00	5	299	89	43	190	3	1	12	15	2	2
053R		.8			50						
052B00	5	139	19	45	139	3	1	12	21	3	2
037N	J	.2	13	.5	0	3	-			3	_
039B00	6	404	28	45	272	3	1	12	11	1	2
010N	b	.9	20	43	0	3	1	12	11	1	2
022B00	9	227	40	46	600	3	1	13	9	3	2
084L	5	227	40	40	0	3	_	13	3	3	2
052B00	5	434	22	47	169	2	1	42	10	2	2
051L	5	.4	32	47	50	3	1	42	18	2	2
056B00	5	274	52	48	340	3	1	40	56	1	2
167R	5	.5	32	40	50	3	1	40	30	1	2
039B00	6	293	24	48	352	3	1	10	22	2	2
017N	U	233	24	40	332	3	1	10	22	2	۷
039B00	6	274	26	40	02	2	1	0	26	2	2
030N	6	274	26	48	93	3	1	8	36	2	2
021B00	6	336	30	40	146	3	1	30	14	2	3
038L	b	330	30	48	00	3	1	30	14	2	3
039B00	6	154	40	48	136	2	1	31	9	2	3
023R	b	.9	40	40	00	2	1	21	9	2	5
021B00	6	233	40	48	136	3	1	28	60	3	3
037L	O	.9	40	40	00	3	1	20	00	3	3
022B00	9	144	44	40	735	2	1	4	11	2	2
088L	9	144	44	48	0	2	1	4	11	2	2
090B00	4	330	30	50	495	3	1	26	12	1	2
019L	4	.1	30	50	0	3	1	26	13	1	2
050B00	4	194	24	51	185	3	1	13	24	2	3
030L	7	.9	2 4	71	00	3	1	13	24	_	,
094B00	6	43	28	53	208	1	1	4	0	4	3
001N	J	.5				-	-	'	j	·	

110000		1			127						
118B00	11	399	30	53	127	3	1	15	29	2	1
059R					00						
118B00	4.4	247	20	F.3	127	2	1	45	22	2	1
058R	11	347	30	53	00	3	1	15	32	3	1
118B00					127						
054R	11	99	40	53	00	3	1	13	15	1	1
		254									
041B00	6	254	32	54	694	3	1	20	18	2	1
007N		.8			0						
047B00	4	317	20	F-7	182		1	0	4.4	2	1
036R	4	.9	30	57	00	2	1	0	44	2	2
108B00		407			486						
010N	5	.4	28	57	0	3	1	25	25	2	3
		.4			0						
039B00	6	65	26	59	376	1	1	12	0	4	3
022N											
067B00	12	317	26	C 4	291	•	1	15	12	2	2
027N	12	.9	36	64	0	3	1	15	13	3	3
049B00					142						
021N	6	265	26	66	00	1	2	23	0	4	1
		151									
009B00	6	151	30	67	517	1	1	8	0	4	1
002N		.9			0						
118B00	11	214	38	72	315	1	1	12	0	4	1
040N	11	.9	36	12	0	1	1	12	U	4	1
048B00					326						
012N	11	160	20	77	0	1	1	13	0	4	2
		65									
094B00	6	65.	20	79	244	1	1	8	0	4	2
002N		9									
039B00	6	37	24	81	119	1	1	13	0	4	3
006N	3			01	0	_	_	13		т	

Appendix D: Detailed Data Information of Sample Two

Bridge_I	Dist	Len	Wi	Арр	457	AbuT	АррТ	EmbH	FSoilD	Consist	Seve
D	rict	gth	dth	Age	ADT	уре	ype	eight	epth	ency	rity
065B00 024N	10	133	28	30	110 6	3	1	0	36	2	1
077B00 084N	10	156	56	8	579 8	1	1	5	50	2	2
004B00 028N	1	693	28	73	163 1	3	1	13	26	2	1
004B00 061N	1	99	44	22	415 5	3	1	13	50	2	1
016B00 050N	3	130	22	60	232	3	1	13	50	2	1
018B00 020N	1	99	23	82	161 2	3	1	4	40	2	1
018B00 109N	1	115	22	58	768	3	1	8	39	2	1
018B00 115N	1	90	44	24	207 0	3	1	3	50	2	1
018B00 116N	1	90	44	24	207 0	3	1	3	50	2	1
020B00 024N	1	198	22	67	894	3	1	3	24	2	1
021B00 048N	6	211	30	31	840 0	3	1	13	45	2	1
021B00 050N	6	361	30	30	646 0	3	1	20	50	2	1
028B00 051N	1	157	20	53	120	3	1	12	36	2	1

		1			1	1		1	1	1	
036B00	12	203	44	36	307	3	1	13	50	2	1
096N	12	203	7-7	30	0		_	15	30	_	_
038B00					104				22	_	
011N	1	330	24	74	0	3	1	2	32	2	1
038B00											
065N	1	99	24	56	81	3	1	2	41	2	1
038B00	1	220	40	20	244	3	1	26	42	2	1
078N	1	238	40	30	9	3	1	20	42	2	1
038B00		74		27	205	_				_	
081N	1	71	44	27	0	3	1	6	50	2	1
042B00	1	0.4	2.4	F2	244	2	1	0	40	2	1
031N	1	84	24	52	341	3	1	9	40	2	1
042B00	1	99	24	F1	225	2	1	2	40	2	1
194N	1	99	24	51	235	3	1	2	40	2	1
042B00	1	99	24	51	225	3	1	4	40	2	1
195N	1	99	24	51	235	3	1	4	40	2	1
053B00	1	114	24	56	118	3	1	11	50	2	1
033N	1	114	24	50	118	3	1	11	50	2	1
053B00	1	175	24	74	994	3	1	3	33	2	1
047N	1	1/3	24	74	994	3	1	3	33	2	1
063B00	11	34	22	15	411	3	1	0	14	2	1
105N	11	54	22	15	62	3	1	U	14	2	1
065B00	10	1.47	20	20	235	2	1	0	50	2	1
026N	10	147	30	28	0	3	1	8	50	2	1
067B00		•••			842			2.1		_	
010N	12	237	44	45	7	3	1	31	19	2	1
072B00	1	011	20	F1	074	2	1	_	F0	2	1
020N	1	811	26	51	974	3	1	5	50	2	1
073B00	1	389	28	51	230	3	1	27	50	2	1
010N	Τ.		20	J1	0		-		30	_	-

073B00	1	114	28	55	271	3	1	9	50	2	1
048N					0		_				
073B00	1	132	28	55	277	3	1	10	50	2	1
049N					4						
073B00	1	430	28	40	117	3	1	17	50	2	1
108N					6						
073B00	1	337	44	40	311	3	1	10	20	2	1
113N					9						
073B00	1	458	39	40	185	3	1	37	50	2	1
114L					80						
073B00	1	143	39	40	185	3	1	6	50	2	1
115R					80						
073B00	1	197	40	40	157	3	1	35	20	2	1
116L					54						
073B00	1	172	40	40	157	3	1	45	15	2	1
119L					54						
073B00	1	260	88	40	120	3	1	9	50	2	1
121N					33						
073B00	1	214	30	16	375	3	1	3	12	2	1
153N											
079B00	1	84	24	52	578	3	1	6	50	2	1
013N					460						
088B00	10	186	30	52	469	3	1	20	13	2	1
042N					0						
097B00	10	646	32	42	978	3	1	33	15	2	1
089N					4						
107B00	3	173	44	14	416	3	1	27	41	2	1
040N					5						
111B00	1	317	28	41	101	3	1	22	44	2	1
045N					0						

114B00	3	220	30	43	632	3	1	0	20	2	1
053R	-		- •		2	,	_		_•	_	-
004B00	1	300	24	73	127	3	1	1	30	2	2
027N	1	300	24	/3	7	3	1	T	30	2	2
008B00	6	234	44	43	820	3	1	18	50	2	2
051N	U	234	44	43	7	3	1	10	30	2	۷
008B00	6	305	54	30	683	3	1	4	50	2	2
066N	b	303	54	30	72	3	1	4	50	2	2
016B00	3	264	24	90	263	2	1	12	Ε0	2	2
016N	3	264	24	80	0	3	1	12	50	2	2
019B00	<i>C</i>	0.2	0.2	25	975	2	1	11	42	2	2
066N	6	93	82	25	7	3	1	11	42	2	2
021B00	<i>C</i>	226	20	40	146	2	1	4	10	2	2
039R	6	336	30	48	00	3	1	4	10	2	2
021B00	<i>C</i>	275	22	0	017	2	1	22	Ε0	2	2
058N	6	275	32	9	917	3	1	22	50	2	2
022B00	0	62	20	24	672	2	1	0	27	2	2
132N	9	63	28	31	673	3	1	0	27	2	2
034B00		450	20		318	2	4	22	44	_	
039L	7	159	30	53	15	3	1	22	11	2	2
036B00	12	114	44	51	519	3	1	10	20	2	2
025N	12	114	44	31	0	3	1	10	20	2	2
036B00	12	968	82	37	666	3	1	21	30	2	2
104N	12	300	02	3/	0	3	1	<u> </u>	30		
036B00	12	400	07	27	919	2	1	24	22	2	2
106N	12	409	82	37	0	3	1	34	32	2	2
036B00	12	245	27	12	570	2	1	4	14	2	2
142N	12	243	32	13	0	3	1	4	14	2	2
037B00	5	766	32	26	957	3	1	18	44	2	2
093R	J		J <u>-</u>		1	9	_			_	_

039B00	6	128	38	48	162	3	1	30	12	2	2
027R	U	120	30	40	02	3	1	30	12	2	۷
042B00	1	208	31	54	722	2	1	0	40	2	2
106N	1	208	31	54	0	3	1	0	40	2	2
042B00	1	264	20	61	FF7	2	1	2	20	2	2
190N	1	204	20	61	557	3	1	2	30	2	2
042B00	1	77	22	16	89	3	1	6	18	2	2
265N	1	//	22	10	69	5	1	0	10	2	2
045B00	9	225	30	31	234	3	1	22	50	2	2
053N	9	225	30	31	3	3	1	22	50	2	2
048B00	11	204	4.4	15	529	•	1	10	17	2	1
180N	11	204	44	15	4	3	1	10	17	2	2
051B00	2	167	4.4	20	686	2	1	6	Ε0.	2	2
133N	2	167	44	30	0	3	1	6	50	2	2
052B00	-	204	22	47	395	2	1	10	10	2	2
038N	5	294	32	47	2	3	1	18	10	2	2
053B00	1	100	20	C7	004	2	1	4	24	2	2
021N	1	198	30	67	894	3	1	4	24	2	2
056B00	_	72	20	45	275	2	1	22	0	2	2
146L	5	72	29	45	9	3	1	23	9	2	2
058B00	12	99	26	73	004	2	1	12	40	2	2
044N	12	99	26	/3	984	3	1	12	40	2	2
058B00	12	202	0.2	20	137	2	1	24	1.0	2	2
067N	12	202	82	28	11	3	1	34	16	2	2
063B00	4.4	200	00	45	190	2	4	4	4.4	2	_
107N	11	306	98	15	53	3	1	1	11	2	2
070B00	1	99	24	74	740	2	1	7	27	2	2
038N	1	99	24	/4	/40	3	1	_ ′	32	2	2
070B00	1	173	39	38	129	3	1	50	50	2	2
063L	1	1	33	30	67	3	.	30	30	_	_

073B00	1	66	22	46	137	3	1	14	50	2	2
015N	_		22	40	9		_	17	30	_	
073B00	1	115	22	64	148	3	1	1	50	2	2
054N	1	113	22	04	8	3	1	1	30	2	2
073B00	4	452	22	C 4	148	2	1	0	F0	2	_
055N	1	152	22	64	8	3	1	8	50	2	2
073B00	1	170	20	42	138	2	1	19	Ε0	2	2
104R	1	170	38	43	10	3	1	19	50	2	2
073B00	1	115	00	42	200	2	1	-	22	2	2
106N	1	115	88	43	78	3	1	5	32	2	2
073B00	1	121	39	40	219	3	1	13	50	2	2
111L	1	121	33	40	03	3	1	13	30	2	۷
073B00	1	196	39	40	185	3	1	0	35	2	2
112R	_	150	33	40	80	3	1		33		۷
079B00	1	99	19	77	315	3	1	12	16	2	2
017N	_		13	,,	2	3	1	12	10		۷
079B00	1	165	19	77	315	3	1	4	15	2	2
019N	_	103	13	,,	2	3	1	4	13		۷
079B00	1	144	28	60	987	3	1	15	40	2	2
056N	_	144	20	00	6	3	1	15	40		۷
079B00	1	216	39	39	134	3	1	21	46	2	2
117R	_	210	33	33	55	3	1	21	40		۷
079B00	1	297	48	11	232	3	1	4	50	2	2
146N	1	231	40	11	7	3	1	4	30		
097B00	10	265	30	46	126	3	1	24	12	2	2
017L	10	203	30	40	00	3	1	<u> </u>	13		∠
097B00	10	302	86	33	216	3	1	21	32	2	2
105N	10	302	50	<i>.</i>	00	, J	1	21	32		_
098B00	12	280	29	50	220	3	1	4	50	2	2
053N				30	8		_	T	30	_	<u>-</u>

098B00	12	355	27	34	100	3	1	22	50	2	2
152N											
098B00	12	269	32	31	144	3	1	21	50	2	2
168N					2						
098B00	12	139	40	33	362	3	1	22	50	2	2
176N					00						
098B00	12	223	51	27	132	3	1	18	42	2	2
185L					50						
106B00	5	159	24	55	140	3	1	14	16	2	2
034N					6		_			_	
106B00	5	226	30	55	205	3	1	5	13	2	2
059R				33	77		_		15	_	_
114B00	3	194	31	43	101	3	1	10	18	2	2
052L	3			13	04		_	10	10	_	_
117B00	2	221	26	47	79	3	1	22	23	2	2
068N		221	20	77	/3	3	_	22	23		2
119B00	10	172	30	52	406	3	1	13	31	2	2
049N	10	1/2	30	32	0		_	15	31		2
003B00	7	129	26	44	104	3	1	13	15	2	3
034N	,	129	20	44	104	3	1	13	13	2	3
008B00	6	279	22	75	466	3	1	7	45	2	3
018N	O	2/9	22	/3	400	3	1	,	43	2	3
019B00	6	354	56	38	503	3	1	50	15	2	3
049L	0	334	30	36	74	3	1	50	15	2	3
019800	-	210	C 4	20	583	2	1	20	40	2	2
053L	6	218	64	38	00	3	1	20	40	2	3
021B00	6	285	44	41	235	3	1	26	25	2	3
044N	0	200	44	41	0	3	1	26	25	2	3
025B00	7	159	30	53	572	3	1	22	9	2	3
058R	,	133	30	JS	4	3	1		3		3
i		1	i	1	i	1	1			ī	

	ı	,			1			ı	ı	1	
030B00	2	32	13	53	106	3	1	1	40	2	3
045N	_	32		33	08	3	-	_	10	_	3
034B00	_	244	0.1	4.0	415	2	1	45	11	2	2
026N	7	211	91	46	00	3	1	15	11	2	3
036B00	12	2.42	40	42	133	2	4	_	45	2	2
144N	12	242	40	13	3	3	1	2	15	2	3
045B00		222	20	20	186	2		4.5	47	_	
057N	9	323	28	30	2	3	1	15	17	2	3
052B00	-	260	22	47	167	2	1	20		2	2
050L	5	360	32	47	09	3	1	39	6	2	3
054B00	2	318	34	54	970	3	1	30	40	2	3
095L	2	318	34	54	1	3	1	30	40	2	5
056B00	5	72	38	45	404	3	1	10	20	2	3
147R	3	/2	36	43	66	3	1	10	20	2	3
056B00	5	100	142	45	599	2	1	40	50	2	3
251N	5	188	142	45	00	3	1	40	50	2	5
056B00	5	940	72	40	288	3	1	23	43	2	3
290N	3	940	/2	40	00	3	1	23	43	2	3
056B00	5	100	106	12	599	3	1	22	20	2	3
478N	3	100	100	12	00	3	1	22	20	2	3
064B00	12	312	43	38	437	3	1	23	50	2	3
055L	12	312	43	36	5	3	1	23	30	2	3
073B00	1	389	44	59	160	3	1	0	46	2	3
095N	1	369	44	33	00	3	1		40	2	3
075B00	2	241	20	62	92	3	1	15	42	2	3
053N		241	20	02	32	3	1	13	44		Э
075B00	2	190	26	59	78	3	1	12	40	2	3
057N		190	20		/6	<u> </u>	т	14	40		ر
076B00	7	320	60	12	269	3	1	10	20	2	3
105L				_	50		_				

081B00	9	157	35	16	163	3	1	5	50	2	3
068N	5	157	33	10	1	3	1		30		3
087B00	7	165	20	61	128	2	1	11	17	2	3
015N	,	103	20	91	1	3	1	11	17	2	3
105B00	7	260		22	280	2	1	10	20	2	2
120L	/	268	60	23	30	3	1	10	30	2	3
106B00	-	105	20		190	2	1	22	22	2	2
066L	5	195	30	55	78	3	1	22	23	2	3
036B00	12	562	28	52	705	2	1	15	20	2	2
084L	12	302	20	32	1	2	1	13	20	2	2
018B00	1	88	82	27	241	3	2	3	42	2	1
111N	1	88	02	27	85	3	2	3	42	2	1
018B00	1	170	28	27	716	3	2	5	50	2	1
113N	1	170	20	27	710	3	2		30		1
036B00	12	319	82	25	525	3	2	35	50	2	1
128N	12		02	23	4	3	2	33	30		1
037B00	5	497	44	20	428	3	2	50	26	2	1
099N	3	737	77	20	0	3		30	20	_	-
042B00	1	198	26	48	75	3	2	17	50	2	1
164N	-		20	10	, ,	3	_	1,	30	_	-
042B00	1	106	30	31	135	3	2	9	16	2	1
216N	-	100	30	31	0	3	_		10	_	-
042B00	1	30	43	23	233	3	2	3	50	2	1
247N	_		43	23	8	3			30	_	-
042B00	1	36	43	23	233	3	2	10	50	2	1
249N	т	30	73	23	8	3	_	10	30	_	1
045B00	9	294	28	25	968	3	2	18	44	2	1
067N	,	254	20		500	,		10	17	_	_
053B00	1	237	26	48	24	3	2	30	49	2	1
068N	_			.5			_			_	_

058B00	12	68	25	24	214	3	2	2	46	2	1
071N	12	08	23	24	214	3	2	2	40		1
064B00											
070N	12	89	29	28	426	3	2	4	50	2	1
067B00					211						
	12	120	38	36		3	2	12	23	2	1
087N					9						
070B00	1	150	30	46	313	3	2	41	12	2	1
045N					0						
072B00	1	234	28	38	124	3	2	31	15	2	1
038N	1	234	20	30	0	3	2	31	13	2	1
073B00											
131N	1	162	28	31	987	3	2	0	22	2	1
073B00	_				179	_		_			
149N	1	33	34	22	0	3	2	8	50	2	1
079B00					864						
076L	1	519	30	48	0	3	2	12	50	2	1
080B00					567	_					
022N	12	312	42	29	3	3	2	22	25	2	1
004B00					350	_					
060N	1	375	44	25	0	3	2	50	50	2	2
007B00	11	226	20	22	607	2	2		24	2	2
109N	11	326	28	32	697	3	2	6	34	2	2
018B00	4	7.5	4.6	22	744	2	2	42	20	2	2
119N	1	75	46	22	744	3	2	13	39	2	2
019B00	-		2.0		104	2		_	20	_	
064N	6	77	26	27	720	3	2	0	38	2	2
028B00	4	224	24	20	F17	2	2	0	47	2	_
052N	1	224	34	38	517	3	2	0	47	2	2
034B00	7	135	38	46	366	3	2	18	10	2	2
027L	'	133	30	+0	47	J	_	10	10		_
	l				L						

036B00	12	615	30	23	667	3	2	46	30	2	2
135N					4					_	
042B00	1	97	38	48	380	3	2	8	40	2	2
158R					5		_			_	_
042B00	1	132	38	48	320	3	2	15	40	2	2
168R	_			.0	5		_			_	_
042B00	1	68	32	26	233	3	2	0	50	2	2
243N			32	20	8		_		30	_	-
054B00	2	157	38	47	545	3	2	14	50	2	2
014L		137	30	47	1			17	30	_	2
054B00	2	174	24	46	354	3	2	12	19	2	2
090N	_	1/4	24	40	334	3	2	12	13		۷
061B00	11	506	34	37	207	3	2	12	38	2	2
078N	11	300	54	37	0	3	2	12	30		۷
061B00	11	303	40	25	665	3	2	30	30	2	2
091L	11	303	40	23	0	3	2	30	30		۷
079B00	1	291	30	48	864	3	2	13	50	2	2
075R	_	231	30	40	0	3	2	13	30		۷
091B00	9	402	28	25	810	3	2	43	28	2	2
055N		402	20	23	810	3	2	43	20		۷
093B00	5	47	28	18	321	3	2	0	33	2	2
054N		47	20	10	321	3	2		33		۷
097B00	10	344	28	27	468	3	2	0	40	2	2
113N	10	344	20	27	5	3	2		40	2	۷
098B00	12	907	41	9	731	2	2	37	ΕO	2	2
257R	12	307	41	J	5	3	<u> </u>	3/	50		~
015B00	5	331	40	17	122	3	2	6	20	2	3
090N)	221	40	1/	00	3		U	20		3
036B00	12	586	34	28	804	3	2	50	50	2	3
120N	12	300	J 1	20	3		_	30	30	_	,
		1								1	

048B00	11	189	24	35	117	3	2	8	20	2	3
140N		103	24	33	4	3	2	O	20	_	3
056B00	5	210	125	26	117	2	2	12	20	2	2
414N	5	210	135	26	000	3	2	12	39	2	3
056B00	_	202	124		540	2	2	2	22	2	2
495N	5	282	124	5	47	3	2	2	23	2	3
057B00	7	198	40	29	167	3	2	42	10	2	3
025R	/	198	40	29	50	3	2	42	10	2	3
059B00	6	281	70	30	208	3	2	14	50	2	3
082N	O	201	70	30	97	3	2	14	50	2	3
108B00	5	323	278	31	676	3	2	14	32	2	3
037N	J	323	270	31	070	3	۷	14	32	2	3
113B00	2	173	39	18	175	3	2	3	17	2	3
102N	2	1/3	33	10	3	3	2	3	17		3
004B00	1	90	40	30	687	1	1	0	0	4	1
057N	1	90	40	30	1	1	1	U	U	4	1
005B00	3	25	35	90	462	1	1	4	0	4	1
010N	3	23	33	90	0	1	1	4	U	4	1
009B00	7	86	24	65	237	1	1	7	0	4	1
024N	,	80	24	03	237	1	1	,	U	4	1
018B00	1	443	30	59	711	1	1	2	0	4	1
025N	_	443	30	33	5	1	1	2	O	_	_
020B00	1	69	76	12	254	1	1	0	0	4	1
066N	1	09	70	12	0	1	1	U	U	4	1
021B00	6	34	23	85	161	1	1	7	0	4	1
023N	U	34	23	65	0	1	1	,	U	4	1
028B00	1	212	19	82	741	1	1	9	0	4	1
013N	1	212	13	02	/41	1	1	J	U	' ' '	1
033B00	10	81	28	32	116	1	1	10	0	4	1
036N				J <u>-</u>	0	_	-				_

004000		1	1					I		T .	1
034B00	7	57	54	16	497	1	1	13	0	4	1
154N					3						
036B00	12	200	2.4	_	219	1	1	24	0	4	1
152N	12	200	24	5	2	1	1	24	0	4	1
064B00	12	48	26	F-7	404	1	1	10	0	4	1
031N	12	48	20	57	494	1	1	10	0	4	1
064B00	12	38	29	18	90	1	1	2	0	4	1
083N	12	30	23	10	90	1	T	2	U	4	1
067B00	12	99	22	C7	133	1	1	4	0	4	1
046N	12	99	22	67	4	1	1	4	0	4	1
070B00	1	83	28	33	617	1	1	0	0	4	1
068N	1	03	20	33	017	1	T		U	4	1
073B00	1	256	44	40	438	1	1	12	0	4	1
122N	1	230	44	40	5	1	T	12	U	4	1
076B00	7	40	43	15	376	1	1	13	0	4	1
100N	,	40	43	15	0	1	1	15	U	4	1
076B00	7	100	20	14	688	1	1	10	0	4	1
101N	/	188	29	14	000	1	1	10	0	4	1
079B00	1	67	22	02	266	1	1	F	0	4	1
037N	1	67	23	83	7	1	1	5	0	4	1
083B00	10	69	27	13	475	1	1	0	0	4	1
039N	10	09	21	13	4/3	1	T	0	U	4	1
086B00	3	38	20	61	787	1	1	6	0	4	1
032N	3	38	20	91	/8/	1	1	0	U	4	1
087B00	7	e c	20	20	449	1	1	0	0	4	1
008N	,	66	26	28	0	1	1	0	0	4	1
091B00	9	131	48	13	391	1	1	0	0	4	1
062N	9	131	40	12	0	1	1		U	4	1
095B00	10	66	20	76	787	1	1	4	0	4	1
003N	0				'3'	-	_			· ·	_

097B00	10	504	30	46	641	1	1	0	0	4	1
012L	10	301	30	10	8	-	-	Ü	Ü	·	-
097B00	10	261	26	Γ4	700	1	1	11	0	4	1
042N	10	261	26	54	706	1	1	11	0	4	1
098B00	40	7.6	26	.	473						
136N	12	76	26	56	0	1	1	7	0	4	1
098B00	42	240	27	C.E.	565	4	4	_	0	4	4
138N	12	318	27	65	5	1	1	5	0	4	1
098B00	42	00	40	25	146	4	4	40	0	4	4
198N	12	88	40	25	0	1	1	10	0	4	1
099B00	10	231	14	53	50	1	1	0	0	4	1
049N	10	251	14	55	30	1	1	U	U	4	1
119B00	10	88	28	14	77	1	1	0	0	4	1
071N	10	88	20	14	//	1	1	U	U	4	1
001B00	8	324	38	7	489	1	1	9	0	4	2
084N	0	324	30	,	9	1	1	9	U	4	۷
003B00	7	37	33	11	277	1	1	12	0	4	2
059N	,	37	33	11	0	1	1	12	U	4	۷
005B00	3	45	34	87	476	1	1	6	0	4	2
011N	3	45	54	67	2	1	1	0	U	4	2
008B00	6	65	28	29	351	1	1	5	0	4	2
067N	U	03	20	23	6	1	1	3	U	4	۷
008B00	6	83	30	11	225	1	1	20	0	4	2
089N	U	83	30	11	223	1	1	20	U	4	۷
009B00	7	132	26	67	550	1	1	8	0	4	2
004N	,	132	20	07	0	1	1	0	U	4	_
019B00	6	362	44	40	273	1	1	0	0	4	2
038N	J	302	74	70	8	1	1		0	*	_
019B00	6	240	84	41	295	1	1	5	0	4	2
043R				- -	52	_	_			·	-

	ı	1	1		1			T	1	T	
019B00	6	313	36	38	782	1	1	10	0	4	2
050N		313	30	30	8	-	-	10		·	_
024B00				4.6						_	
156N	2	40	23	16	732	1	1	16	0	4	2
025B00					204						
105N	7	263	140	9	31	1	1	10	0	4	2
034B00					137						
010N	7	443	16	60	0	1	1	20	0	4	2
035B00					286						
095N	9	100	48	8	2	1	1	6	0	4	2
036B00	12	159	20	77	272	1	1	10	0	4	2
006N					6						
036B00	12	491	82	37	991	1	1	0	0	4	2
105N		.51	02	3,	0	-	-		Ü	·	_
039B00		245	26	40	1.11	1	1	20	0	4	2
029N	6	245	26	48	141	1	1	20	0	4	2
040B00					429						
040N	7	257	48	12	5	1	1	23	0	4	2
042B00					931						
274N	1	134	65	12	4	1	1	2	0	4	2
048B00					129						
	11	140	20	51		1	1	2	0	4	2
030N					0						
049B00	6	34	14	79	679	1	1	4	0	4	2
027N											
049B00	6	78	19	83	761	1	1	7	0	4	2
036N		, ,		33	/ 01	_	_				_
052B00	5	62	23	40	128	1	1	0	12	4	2
056N)	63	23	40	5	1	1	0	13	4	2
055B00	4.1	66	2.4	00	050		_	_			
007N	11	66	24	80	859	1	1	3	0	4	2
	l	I			I			1		1	

055B00	11	68	27	27	415	1	1	5	0	4	2
038N	11	08	27	27	413	1	1	3	U	4	2
056B00	_	20	20		186				•		•
367N	5	38	38	33	0	1	1	4	0	4	2
057B00	_				123	_	_			_	
032N	7	111	35	14	0	1	1	0	0	4	2
058B00	42	205	2.4	70	528			•	•		•
047N	12	295	24	79	6	1	1	2	0	4	2
059B00		20	4.0		213			•			
112N	6	28	14	9	79	1	1	0	0	4	2
060B00	12	F2	22	F 4	112	1	1	10	0	4	2
042N	12	53	22	54	5	1	1	10	0	4	2
060B00	12	40	20	12	230	1	1	12	0	4	2
077N	12	48	38	12	0	1	1	13	0	4	2
061B00	11	00	24	CO	402	1	1	C	0	4	2
016N	11	99	24	69	0	1	1	6	0	4	2
061B00	11	144	19	83	625	1	1	14	0	4	2
037N	11	144	19	63	625	1	1	14	0	4	2
061B00	11	159	40	36	770	1	1	0	0	4	2
081R	11	159	40	30	0	1	1	U	U	4	2
063B00	11	185	38	47	189	1	1	0	0	4	2
039R	11	103	36	47	60	1	1	U	U	4	2
063B00	11	480	30	46	189	1	1	5	0	4	2
043L	11	460	30	40	60	1	1	5	U	4	2
063B00	11	100	22	26	805	1	1	12	0	4	2
097N	11	108	32	36	4	1	1	12	0	4	
066B00	11	124	24	63	245	1	1	10	0	4	2
033N	11	124	<u> </u>	03	0	1	1	10	U	4	
067B00	12	116	19	82	714	1	1	8	0	4	2
031N			-			_	_		-		_

072B00	1	62	19	83	445	1	1	7	0	4	2
005N	1	02	19	63	445	1	1	,	U	4	2
072B00	1	26	14	39	728	1	1	7	0	4	2
051N	1	20	14	39	8	1	1	,	U	4	2
073B00	1	42	28	60	681	1	1	2	0	4	2
026N	1	43	28	60	0	1	1	2	0	4	2
076B00	7	172	28	59	121	1	1	17	0	4	2
008N	/	1/2	20	39	00	1	1	17	U	4	2
077B00	10	224	44	8	136	1	1	17	0	4	2
085N	10	224	44	0	4	1	1	17	U	4	2
079B00	1	129	23	83	136	1	1	4	0	4	2
035N	1	129	23	63	0	1	1	4	U	4	2
079B00	1	172	19	83	119	1	1	4	0	4	2
047N	1	1/2	19	63	7	1	1	4	0	4	2
079B00	1	1.11	20	4.4	926	1	1	1.1	0	4	2
081N	1	141	28	44	836	1	1	14	0	4	2
081B00	9	46	25	20	307	1	1	4	0	4	
047N	9	40	25	38	307	1	1	4	0	4	2
086B00	2	92	40	11	276	1	1	15	0	4	
056N	3	92	40	11	0	1	1	15	0	4	2
094B00	6	60	25	29	216	1	1	10	0	4	2
031N	0	60	23	29	210	1	1	10	U	4	2
095B00	10	101	40	8	607	1	1	15	0	4	2
043N	10	101	40	0	007	1	1	13	U	4	۷
097B00	10	143	22	58	144	1	1	12	0	4	2
058N	10	143	22	36	4	1	1	12	0	4	2
105B00	7	53	29	75	569	1	1	0	0	4	2
021N			23	/3	0		1	0	U	- 1	~
105B00	7	114	30	18	133	1	1	0	0	4	2
129N					0	-	-			· ·	_

106B00	5	165	48	17	219	1	1	12	0	4	2
090N		103	40	17	00	_	_	12	O	_	۷
110B00	2	42	20	F 4	187	1	1	10	0	4	2
018N	3	43	28	54	0	1	1	18	0	4	2
112B00	_	260	20	16	252	1	1	2	0	4	_
035N	5	269	28	16	253	1	1	3	0	4	2
118B00	11	140	20	02	251	1	1	12	0	4	2
022N	11	140	20	83	9	1	1	12	0	4	2
118B00	11	120	24	00	796	1	1	26	0	4	2
031N	11	120	24	80	0	1	1	26	0	4	2
003B00	7	216	22	O.F.	326	1	1	C	0	4	3
011N	/	216	23	85	0	1	1	6	0	4	3
003B00	7	264	28	20	124	1	1	0	0	4	3
056N	/	204	20	20	1	1	1	U	U	4	3
005B00	3	83	26	45	409	1	1	10	0	4	3
045N	3	65	20	43	409	1	1	10	0	4	3
007B00	11	60	10	54	012	1	1	10	0	4	3
062N	11	60	18	54	813	1	1	19	0	4	3
008B00	6	F72	26	25	133	1	1	1.4	0	4	2
075N	6	573	26	25	930	1	1	14	0	4	3
009B00	7	35	27	28	113	1	1	2	0	4	3
061N	/	33	27	20	9	1	1	2	U	4	3
009R00	7	77	12	85	68	1	1	20	0	4	3
605N	,	''	12	63	08	1	1	20	U	4	3
017B00	2	48	10	02	202	1	1	15	0	4	2
026N	2	48	19	82	303	1	1	15	0	4	3
022B00	9	392	102	88	571	1	1	3	0	4	3
035N	9	332	102	00	0	1	1	3	U	' ' '	3
022B00	9	36	40	11	281	1	1	1	0	4	3
160N					0	-	*	<u> </u>			

024B00 064N	2	46	22	56	345	1	1	7	0	4	3
025B00	7	152	24	65	593	1	1	4	0	4	3
033N	,	132	24	03	333	1	1	4	0	4	3
025B00	7	80	15	13	180	1	1	4	0	4	3
102N					126						
034B00 036N	7	112	58	56	136 70	1	1	14	0	4	3
034B00	7	204	68	34	163	1	1	27	0	4	3
123N					17						
034B00 136N	7	32	28	29	195 9	1	1	9	0	4	3
040B00	7	109	40	41	975	1	1	14	0	4	3
028L 041B00		8			0 572						
041800 051N	6	330	35	13	0	1	1	12	0	4	3
057B00 024N	7	174	56	29	131	1	1	15	0	4	3
063B00					00 842						
018N	11	108	24	80	4	1	1	8	0	4	3
064B00	12	475	12	45	127	1	1	0	0	4	3
038N					3						
067B00	12	48	24	64	160	1	1	6	0	4	3
060N					0						
067B00 096N	12	48	12	35	190 0	1	1	0	0	4	3
071B00										_	
083N	3	125	26	27	90	1	1	5	0	4	3
075B00	2	26	22	22	164	1	1	0	0	4	3
072N											

076B00	7	111	24	81	126	1	1	7	0	4	3
012N	,		- '	01	00	-	-	,	Ü	·	3
084B00	7	127	25	10	107	1	1	0	0	4	2
043N	7	127	35	18	187	1	1	0	0	4	3
084B00	7	F2	26	1.0	107	1	1	0	0	4	2
047N	/	52	26	16	187	1	1	0	0	4	3
098B00	12	53	30	57	202	1	1	5	0	4	3
058N	12	55	30	57	0	1	1	5	U	4	5
098B00	12	46	22	48	338	1	1	0	0	4	3
092N	12	40	22	40	2	1	1	U	U	4	5
105B00	7	63	23	45	483	1	1	12	0	4	3
046N	,	03	23	43	403	1	1	12	O	7	3
003B00	7	108	30	50	864	3	1	50	0	4	2
007R	,	8	30	30	3	3	1	30	O	7	۷
019B00	6	283	66	41	295	3	1	40	0	4	2
044L	O	203	00	41	52	3	1	40	U	4	2
019B00	6	494	25	41	591	3	1	50	0	4	2
045N	O	434	23	41	03	3	1	30	U	4	۷
057B00	7	185	24	51	146	3	1	15	0	4	2
012N	,	103	24	31	0	3	1	13	U	4	۷
103B00	9	156	40	47	600	3	1	50	0	4	2
056L	,	130	40	47	0	3	1	30	O	7	۷
019B00	6	285	52	44	440	3	1	50	0	4	3
048L	O	203	32	7-7	75	3	1	30	O	-	3
034B00	7	159	30	53	318	3	1	38	0	4	3
032L	,	133	30	JJ	14	3	1	30	0	7	.
067B00	12	205	30	50	723	3	1	7	0	4	3
008N	14	203	J0	50	2	,			J		,
063B00	11	132	26	73	133	2	1	6	0	4	3
025N					01	_	_			•	_

					ı			ı		ı	
002B00	3	225	30	50	345	2	1	14	0	4	1
012N	5	223	30	30	0	2	1	14	O	_	_
005B00											
047N	3	100	20	62	204	2	1	6	0	4	1
012B00	6	152	20	60	260	2	1	6	0	4	1
017N											
033B00	10	189	24	56	546	2	1	5	0	4	1
015N	10	103	24	30	340	۷	1	3	U	4	1
033B00					107						
023N	10	134	22	59	0	2	1	10	0	4	1
060B00											
	12	231	25	45	801	2	1	5	0	4	1
060N											
061B00	11	76	22	66	130	2	1	5	0	4	1
049N	11	70	22	00	130	۷	1	3	U	4	1
067B00					118						
097N	12	67	40	35	5	2	1	12	0	4	1
097B00	10	100	12	69	383	2	1	5	0	4	1
046N											
111B00	1	448	39	6	704	2	1	0	0	4	1
060N	1	440	39	O	704	2	1	U	U	4	1
005B00					187						
095R	3	289	42	13	5	2	1	10	0	4	2
008B00	6	66	22	62	155	2	1	4	0	4	2
026N					7						
008B00	6	279	26	48	183	2	1	0	0	4	2
032N	U	2/3	20	40	0	_	1		U	+	
008B00					316						
040L	6	159	107	55	92	2	1	6	0	4	2
008B00	6	307	22	48	907	2	1	18	0	4	2
042L					93						

008B00	6	159	73	22	453	2	1	12	0	4	2
078L	0	139	/3	22	97	2	1	12	U	4	2
008B00		450	70	22	585	_	4	4		4	_
080L	6	159	73	23	71	2	1	4	0	4	2
010B00		246	42	0	958	_	4			4	_
073L	9	246	42	8	0	2	1	8	0	4	2
021B00		210	26	40	270	2	4	10	0	4	2
006N	6	319	26	48	270	2	1	18	0	4	2
025B00	7	102	22	61	762	2	1	2	0	4	2
042N	/	192	22	61	702	2	1	2	0	4	2
026B00	11	129	23	57	174	2	1	9	0	4	2
049N	11	129	23	57	2	2	1	9	U	4	2
028B00	1	89	20	65	74	2	1	4	0	4	2
029N	_	03	20	03	/4	2	1	4	U	4	۷
032B00	9	114	22	57	485	2	1	7	0	4	2
020N	9	114	22	37	463	2	1	,	U	4	۷
034B00	7	199	30	56	280	2	1	15	0	4	2
038L	/	199	30	30	38	2	1	13	U	4	۷
039B00	6	350	28	48	141	2	1	18	0	4	2
014N	0	330	20	40	9	2	1	10	U	4	2
041B00	6	321	24	82	145	2	1	8	0	4	2
014N	0	321	24	82	0	2	1	0	0	4	۷
049B00	6	404	90	57	137	2	1	18	0	4	2
017N	0	404	90	57	0	2	1	10	U	4	2
052B00	5	144	24	60	460	2	1	5	0	4	2
048N)	144	4 4	00	400		1	, ,		4	
055B00	11	101	20	65	315	2	1	9	0	4	2
020N		101			313		<u> </u>			- T	<u>-</u>
063B00	11	252	24	74	696	2	1	19	0	4	2
002N					7						

000-00		T	l		0.5.5					ı	1
066B00	11	212	21	71	308	2	1	10	0	4	2
013N					0						
067B00	12	116	10	01	74.4	2	1	0	0	4	2
032N	12	116	19	81	714	2	1	8	0	4	2
096B00					284						
001N	6	630	24	79	1	2	1	6	0	4	2
096B00					285						
	6	133	26	4		2	1	16	0	4	2
008N					1						
096B00	6	159	22	61	115	2	1	7	0	4	2
026N					3						
097B00	10	99	22	67	473	2	1	3	0	4	2
035N	10	33	22	07	7	2	1	3	U	4	2
097B00					122						
043N	10	66	25	69	0	2	1	2	0	4	2
098B00											
005N	12	159	22	58	267	2	1	4	0	4	2
106B00	5	245	30	55	272	2	1	15	0	4	2
062L					28						
110B00	3	121	28	83	349	2	1	3	0	4	2
011N	3	121	20	63	7	2	1	3	U	4	۷
114B00	_				222	_	_		_	_	_
005N	3	200	54	61	69	2	1	25	0	4	2
118B00					101						
044N	11	530	26	65	00	2	1	30	0	4	2
118B00	11	172	38	48	182	2	1	13	0	4	2
046L					50						
118B00	11	192	26	67	117	2	1	0	0	4	2
090N	**	132		0,	73	_	_				-
003B00	7	226	26	F0	120	2	4	11	0	4	_
022N	7	236	26	50	67	2	1	11	0	4	3
								Ì		Ì	

009B00	7	129	20	76	132	2	1	12	0	4	3
008N					0						
009B00	7	129	28	49	165	2	1	16	0	4	3
032N					6						
011B00	9	70	26	32	777	2	1	6	0	4	3
047N					0						
019B00	6	114	24	60	360	2	1	5	0	4	3
030N					0						
028B00	1	198	14	67	198	2	1	3	0	4	3
024N									-		
034B00	7	144	30	51	157	2	1	10	0	4	3
003N					42				-		
034B00	7	134	24	53	318	2	1	18	0	4	3
021L					14	_	_			·	
034B00	7	100	26	64	259	2	1	8	0	4	3
049N					7	_	_			·	
034B00	7	132	50	51	256	2	1	20	0	4	3
078R					48	_	_			·	
037B00	5	213	30	55	183	2	1	30	0	4	3
060R					50	1	1		,	·)
041B00	6	241	24	82	343	2	1	12	0	4	3
011N					0	_	_			·	
045B00	9	225	25	73	154	2	1	14	0	4	3
025N	J			, ,	6	_	_			·	
056B00	5	282	84	29	100	2	1	11	0	4	3
369N	5	202	57		98	<u>-</u>	_			T	3
061B00	11	79	28	32	207	2	1	27	0	4	3
084N		, ,	20	32	0	<u>-</u>	_	_,		T	3
066B00	11	185	24	58	530	2	1	8	0	4	3
036N		100	<u>-</u>	30	330	_	_			T	3

071B00	3	364	24	79	800	2	1	26	0	4	3
047N	3	304	24	75	3	2	1	20		4	3
087B00	_	400			188			_		_	
012N	7	100	25	62	1	2	1	7	0	4	3
105B00					793						
020N	7	216	26	27	9	2	1	8	0	4	3
026B00					130						
0108N	11	144	40	22	35	1	2	11	0	4	1
026B00											
109N	11	63	32	22	379	1	2	9	0	4	1
028B00					400						
058N	1	36	41	31	0	1	2	18	0	4	1
058B00					165						
081N	12	68	41	18	0	1	2	0	0	4	1
					U						
059B00	6	247	28	17	340	1	2	0	0	4	1
098N											
060B00	12	341	33	43	536	1	2	50	0	4	1
058N					8						
063B00	11	115	28	16	670	1	2	5	0	4	1
110N			20	10	070	_	-			· ·	1
064B00	12	240	30	31	566	1	2	0	0	4	1
066N	12	240	30	31	300	1	۷	0	U	4	1
067B00	12	1.12	20	20	282	1				4	1
111N	12	142	30	30	5	1	2	6	0	4	1
067B00	4.5	265						_		_	
122N	12	213	33	23	778	1	2	4	0	4	1
076B00	_					_	_	_	_	_	_
089N	7	53	28	22	583	1	2	9	0	4	1
098B00	42	100	20	47	576	4	2	40	_	4	4
239N	12	108	30	17	0	1	2	10	0	4	1
	l	ĺ			ĺ	l					

110B00	3	83	42	17	244	1	2	4	0	4	1
040L	3		12	1,	0	-	_		Ü	'	-
025B00	7	87	40	20	473	1	2	17	0	4	2
100N	,	87	40	20	3	1	2	17	U	7	۷
028B00	1	73	44	26	318	1	2	10	0	4	2
063N		/3	44	20	0	1	2	10	O	7	۷
032B00	9	906	44	16	320	1	2	20	0	4	2
035N	5	300	44	10	0	1	2	20	U	7	۷
049B00	6	102	40	18	232	1	2	2	0	4	2
069N	U	102	40	10	0	1	2	2	U	4	۷
056B00	5	46	31	19	784	1	2	3	0	4	2
453N	5	40	31	13	704	1	2		O	_	۷
097B00	10	34	28	19	133	1	2	7	0	4	2
118N	10		20	13	4	1		,	Ü	7	2
098B00	12	102	44	20	876	1	2	0	0	4	2
230N	12	3	7-7	20	0	1			Ü	7	2
101B00	6	289	24	26	190	1	2	13	0	4	2
017N	Ü	203		20	130	-	_	13	Ü	'	-
105B00	7	78	42	8	515	1	2	8	0	4	2
142R	,	/ 0	,_	Ü	0	-	_		Ü	'	-
008B00	6	276	82	55	524	1	2	0	0	4	3
009N	Ü	2,0	02	33	58	-	_		Ü	'	3
008B00	6	67	28	33	912	1	2	16	0	4	3
065N		07	20	33	312	1		10	Ü	7	3
041B00	6	219	65	17	297	1	2	3	0	4	3
047N	J	213	0.5	1/	00	1	_				,
056B00	5	99	149	27	171	1	2	0	0	4	3
393N	,		170	21	000	-	_				,
093B00	5	92	29	29	235	1	2	7	0	4	3
049N		52			6	_	_	,			

118B00	11	485	30	57	162	3	2	40	0	4	2
063R	11	403	30	37	46	3	2	40		_	۷
070B00	1	71	44	22	392	2	2	3	0	4	2
075N	1	/1	44	22	7	2	2	3	U	4	2
086B00	3	140	32	19	276	2	2	5	0	4	2
053N	3	140	32	19	0	2	۷	3	U	4	۷
103B00	9	149	30	27	555	2	2	11	0	4	2
077N	9	149	30	27	0	2	۷	11	U	4	۷
105B00	7	296	47	28	117	2	2	5	0	4	2
107R	,	250	47	20	53	2	۷			7	۷
105B00	7	358	62	27	115	2	2	13	0	4	2
108R	,	330	02	27	08	2	2	15		_	۷
022B00	9	185	11.	51	192	1	1	20	0	3	3
075N	3	103	2	31	1	-	1	20			3
053B00	1	231	24	60	275	3	1	10	50	3	1
059N	_	231	24	00	273	3	1	10	30		1
040B00	7	154	20	67	277	3	1	3	21	3	3
004N	,		20	0,	0	3	-				3
042B00	1	99	23	81	775	1	1	6	0	3	1
118N	_			01	773	-	•				-
042B00	1	38	28	59	516	1	1	8	40	3	2
093N	_		20	33	0	-	•				_
007B00	11	96	23	37	119	1	1	20	0	3	3
101N				3,	1	-	•				3
002B00	3	363	26	52	197	3	1	24	41	3	1
009N											
004B00	1	99	24	57	254	3	1	5	40	3	1
039N											
004B00	1	99	24	55	240	3	1	5	50	3	1
051N	_				0		-				_

013B00	10	406	24	56	141	3	1	25	24	3	1
039N	10	100	- '	30	0		_	23	- '		_
018B00	1	365	44	32	919	3	1	17	50	3	1
102N	_	303	44	32	8	3	1	17	30		1
018B00	1	54	22	18	392	3	1	10	12	3	1
122N	1	34	22	10	392	3	1	10	12	3	1
018B00	1	58	22	18	54	3	1	10	12	3	1
124N	1	36	22	10	34	3	1	10	12	3	1
020B00	1	99	24	53	194	3	1	2	39	3	1
040N	1	99	24	33	134	3	1	2	39	3	1
028B00	1	114	24	55	294	3	1	7	49	3	1
049N	_	114	24	33	234	3	1	,	43		1
036B00	12	798	44	37	218	3	1	20	13	3	1
110N	12	738	44	37	3	3	1	20	13		1
036B00	12	192	30	27	199	3	1	4	50	3	1
125N	12	192	30	27	199	3	1	4	30	3	1
036B00	12	200	24	5	219	3	1	12	23	3	1
153N	12	200	24	3	2	3	1	12	23	3	1
038B00	1	196	38	48	173	3	1	22	50	3	1
015N	_	150	30	40	0	3	1	22	30		1
038B00	1	159	22	44	40	3	1	3	20	3	1
048N	_		22	44	40	3	1		20		1
038B00	1	78	26	22	93	3	1	8	48	3	1
084N	1	/8	20	22	93	3	1	0	40	3	1
042B00	1	208	26	48	2/11	3	1	22	50	3	1
028N	1	200	20	40	341	3	1	23	30	3	1
042B00	1	84	26	56	825	3	1	3	40	3	1
057N	1	04	20	30	023	3	1	3	40	,	1
042B00	1	114	24	56	673	3	1	3	50	3	1
129N	_	117	<u> </u>	30	0,3		.		30		<u> </u>
		1			1	1				1	

(-											
042B00	1	241	26	48	200	3	1	20	38	3	1
172N											
042B00	1	114	24	55	730	3	1	4	49	3	1
196N											
042B00	1	180	28	28	233	3	1	5	50	3	1
222N					8						
042B00	1	135	28	28	233	3	1	5	50	3	1
224N					8						
042B00	1	71	29	16	419	3	1	0	21	3	1
261N								_			
053B00	1	87	19	83	130	3	1	12	40	3	1
036N											
053B00	1	227	26	18	239	3	1	0	23	3	1
098N	_						_				_
053B00	1	212	28	16	140	3	1	2	28	3	1
100N	_		20	10	110	3	_	_	20		1
059B00	6	256	62	21	961	3	1	0	10	3	1
053L	J	230	02	21	77	3	1		10		1
067B00	12	411	20	75	778	3	1	0	32	3	1
038N	12	411	20	/3	778	3	1		32	3	1
067B00	12	203	44	41	104	3	1	14	12	3	1
082N	12	203	44	41	41	3	1	14	12	3	1
067B00	12	149	77	36	137	3	1	10	20	3	1
102N	12	149	//	30	54	3	1	10	20	3	1
067B00	12	201	44	36	137	2	1	10	20	3	1
103N	12	291	44	30	54	3	1	10	20	3	1
068B00	9	76	20	63	245	3	1	7	22	3	1
054N	ד	/0	20	03	243	3	1		22	3	1
071B00	3	96	27	23	218	3	1	7	17	3	1
086N	J	30	21	23	210	,	1	'	1,	,	_
		1			1					1	

073B00	1	133	38	43	140	3	1	23	50	3	1
101L	_	133	30	73	45	3	_	23	30		-
073B00	1	64	23	15	174	3	1	2	39	3	1
158N	1	04	23	13	1/4	3	1	2	33		1
073B00	1	506	42	15	646	3	1	3	17	3	1
164R	1	300	42	13	1	5	1	3	17	3	1
079B00	1	132	24	60	504	3	1	7	41	3	1
089N	1	132	24	00	304	3	1	,	41	3	1
079B00	1	232	28	16	419	3	1	9	11	3	1
144R	1	232	20	10	0	3	1	9	11	3	1
097B00	10	288	82	34	924	3	1	10	10	3	1
100N	10	200	02	34	3	5	1	10	10	3	1
098B00	12	157	45	37	169	3	1	8	17	3	1
201R	12	137	43	37	69	3	1	0	17	3	1
006B00	9	157	40	48	807	3	1	13	7	3	2
050R	9	137	40	40	1	3	1	13	,	3	۷
007B00	11	208	30	27	185	3	1	0	37	3	2
121N	11	200	30	27	4	3	1		37		۷
010B00	9	293	29	8	156	3	1	10	45	3	2
074N	5	233	23	0	21	3	1	10	43		۷
016B00	3	76	24	77	147	3	1	8	20	3	2
019N	3	70	24	,,	147	3	1		20		۷
018B00	1	99	24	52	277	3	1	5	37	3	2
090N	1		24	32	2//	3	1		37		۷
018B00	1	163	34	11	139	3	1	0	50	3	2
126N	1	103) 4	11	3	J	1		50)	_
028B00	1	99	24	55	79	3	1	4	23	3	2
048N	1	33	∠ +	,,,	, ,	J	1	7	23	,	_
034B00	7	262	56	12	439	3	1	3	26	3	2
158N	,		30	± £	7	3	_		20		<u>-</u>

035B00	9	266	54	9	286	3	1	31	8	3	2
097N					2						
036B00	12	114	44	51	519	3	1	20	14	3	2
023N					0						
036B00	12	99	22	62	440	3	1	4	18	3	2
060N				0_			_	·			_
036B00	12	436	30	46	575	3	1	12	50	3	2
079N	12	430	30	40	6	3	1	12	30		۷
036B00	12	396	34	38	280	3	1	22	50	3	2
090N	12	390	34	30	0	3	1	22	30	3	2
036B00	12	235	82	37	120	3	1	28	20	3	2
107N	12	233	82	37	22	3	1	28	20	5	2
036B00	12	620	0.2	27	120	2	1	20	47	2	2
109N	12	620	82	37	40	3	1	29	47	3	2
036B00	42	407	70	27	119	2	4	22	47	2	
114N	12	187	70	37	70	3	1	23	47	3	2
036B00	12	105	0.4	45	113	2	1	0	10	2	2
139N	12	105	84	15	82	3	1	8	10	3	2
036B00	4.2	250	0.6	4.5	113	2			22	_	
140N	12	250	86	15	82	3	1	2	22	3	2
042B00	4	242	20	40	328	2	1	45	40	2	_
009N	1	213	30	48	0	3	1	15	40	3	2
042B00		220	22	60	139	2	4	2	40	2	2
062N	1	228	22	60	0	3	1	3	40	3	2
042B00		142	20	63	202		4	2	42	2	_
185N	1	112	20	62	393	3	1	3	42	3	2
053B00	1	132	20	78	765	3	1	8	30	3	2
014N	1	132	20	/0	/05	3	1	0	30	3	∠
053B00	1	165	20	78	765	3	1	9	30	3	2
015N	1	102	20	/6	/05	3	1	9	30	3	
1	ı	1	Ī	ı	ĺ	ı	ı	ı	Ī	1	1

053B00	1	195	30	84	707	3	1	13	38	3	2
041N											
056B00	5	220	38	49	776	3	1	25	50	3	2
153N					04						
058B00	12	827	30	53	620	3	1	2	50	3	2
041N					4						
058B00	12	129	44	46	565	3	1	20	34	3	2
050R					0						
059B00	6	479	40	13	894	3	1	18	7	3	2
106L	Ü	.,,	.0	13	8	3	-	10	,		_
059B00	6	279	85	14	178	3	1	7	6	3	2
108N	U	2/3	83	14	96	3	1	,	O	3	۷
060B00	12	161	24	77	190	2	1	14	18	3	2
012N	12	101	24	//	5	3	1	14	10	3	2
061B00	4.4	474	20	F4	689	2	1	2.4	22	2	2
068N	11	174	30	51	6	3	1	34	33	3	2
061B00	11	225	40	26	935	2	1	7	42	2	2
082R	11	225	40	36	0	3	1	7	43	3	2
064B00	12	111	26	F2	100	2	1	2	26	2	2
027N	12	144	26	53	0	3	1	2	36	3	2
067B00	12	451	82	15	625	3	1	0	20	3	2
130N	12	431	02	13	0	3	1	U	20	3	۷
073B00	1	294	44	43	780	2	1	11	Ε0	2	2
009N	1	294	44	43	0	3	1	11	50	3	2
073B00	1	204	42		805	2	4	0	44	2	_
059N	1	204	42	55	0	3	1	0	41	3	2
073B00	1	132	24	63	343	3	1	10	40	3	2
079N	1	134	4 4	03	5	3	1	10	40	3	_
073B00	1	238	50	64	163	3	1	30	40	3	2
093N	1	230	50	04	64	,	1	30	70	,	_

079B00	1	152	30	54	326	3	1	11	50	3	2
011N					2						
079B00	1	114	28	47	235	3	1	11	39	3	2
097N	_				1	J	_				_
079B00	1	210	39	41	131	2	1	40	Γ0	2	2
118R	1	8	39	41	55	3	1	40	50	3	2
080B00	12	200	24	57	156	3	1	6	50	3	2
013N	12	200	24	37	0	5	1	U	30	3	2
080B00	40	00	2.4		184	2		•		2	_
018N	12	99	24	50	0	3	1	0	50	3	2
088B00	10	0.4	20	70	200	2	1	4	26	2	2
010N	10	84	20	78	0	3	1	4	26	3	2
103B00	9	303	76	9	222	3	1	18	27	3	2
093N	9	303	70	9	00	5	1	10	27	3	2
105B00	7	171	40	16	459	3	1	3	5	3	2
133N	,	1/1	40	16	0	3	1	3	5	3	2
114B00	3	283	120	13	463	3	1	2	12	3	2
087N	3	203	120	13	60	5	1	2	12	3	۷
114B00	3	128	59	13	213	3	1	1	12	3	2
090R	J	120	33	13	80	3	1	1	12	3	۷
118B00	11	674	30	50	154	3	1	32	39	3	2
045L	11	074	30	30	96	5	1	32	39	3	۷
120B00	7	165	39	42	194	3	1	20	20	3	2
024L	,	103	39	42	00	5	1	20	20	3	2
007B00	11	99	31	16	156	3	1	2	11	3	3
143N	11	ַ בל 	21	10	130	3	1		11	<u> </u>	3
008B00	6	318	30	57	196	3	1	25	50	3	3
021N	J	310	30	3,	6	,	4	23	30		
008B00	6	640	26	25	133	3	1	32	18	3	3
073N	J	0 10	20	23	930	3	*	J <u>2</u>	10		

011B00	7	509	44	44	114	3	1	39	3	3	3
038L	,	303	44	44	00	3	1	33	3	3	3
018B00	1	345	42	6	193	3	1	6	13	3	3
137R	1	343	42	O	6	3	1	0	15	3	3
035B00	9	95	30	12	148	3	1	2	8	3	3
091N	9	95	30	12	140	3	1	2	0	3	3
036B00	12	114	44	51	116	3	1	20	30	3	3
021N	12	114	44	31	00	3	1	20	30	3	3
036B00	12	99	28	56	198	3	1	15	50	3	3
036N	12	99	20	30	9	3	1	13	30	3	3
036B00	12	371	24	53	274	3	1	0	50	3	3
078N	12	3/1	24	55	0	3	1	U	30	3	3
036B00	12	98	26	18	600	3	1	0	14	3	3
138N	12	38	20	10	000	3	1	U	14	3	3
040B00	7	153	30	14	412	3	1	11	30	3	3
038N	,	155	30	14	412	3	1	11	30	3	3
045B00	9	236	48	12	520	3	1	7	5	3	3
077N	J	230	70	12	9	3	1	,	3		3
056B00	5	284	30	49	744	3	1	22	50	3	3
156L	3	204	30	73	44	3	-	22	30		3
056B00	5	385	30	49	148	3	1	38	50	3	3
158N	3	303	30	73	888	3	-	30	30		3
056B00	5	151	40	28	322	3	1	18	9	3	3
372R	3		40	20	85	3	1	10	,		3
057B00	7	128	28	14	441	3	1	4	9	3	3
031N	'	120	20	14	0	J	1	-1	9	, ,	3
059B00	6	159	88	55	776	3	1	30	46	3	3
038L			50	33	69	3	_		70		
064B00	12	201	34	32	484	3	1	15	50	3	3
063N		201	J-1	J <u>2</u>	154	3	_	13	30		3

073B00	1	214	30	55	195	3	1	0	50	3	3
061N	1	214	30	55	00	3	1	U	50	3	3
079B00	1	193	47	39	130	3	1	24	11	3	3
114R	1	193	47	39	00	3	1	24	11	3	3
081B00	9	210	26	52	109	3	1	32	40	3	3
036N	9	210	20	52	1	3	1	32	49	3	3
084B00	7	172	35	15	698	3	1	2	6	3	3
046N	,	1/2	33	13	038	3	1	2	O	3	3
087B00	7	354	40	18	685	3	1	12	5	3	3
059N	,	334	40	10	4	3	1	12	3	3	3
100B00	8	120	26	64	586	3	1	0	12	3	3
029N	0	8	20	04	4	3	1	U	12	3	3
114B00	3	496	41	13	787	3	1	7	6	3	3
085L	3	430	71	13	5	3	1	,	Ü		3
118B00	11	141	38	50	127	3	1	30	5	3	3
056R	11	141	30	30	00	3	1	30	3		3
004B00	1	90	23	13	325	2	1	3	0	3	2
067N	1		ì	1	0_0	1	1)	,	J	1
034B00	7	117	62	51	387	2	1	5	4	3	2
094L	,		91	3	54	1	1)	•	3	1
012B00	6	244	44	26	483	3	2	22	18	3	1
030N					3		_				_
013B00	10	122	24	27	206	3	2	9	18	3	1
071N	10	122	- '	2,	200	3	-	3	10		-
021B00	6	150	24	45	291	3	2	7	17	3	1
034N	J	130	2 4	7.7	231	,			1/		<u> </u>
028B00	1	41	45	26	171	3	2	10	33	3	1
064N	-		.5		0		_				_
041B00	6	403	24	26	121	3	2	10	30	3	1
041N				_0			_				_

042B00	1	97	38	48	380	3	2	12	40	3	1
159L	-]	30	.0	5	3	_		.0		_
042B00	1	245	28	31	691	3	2	0	34	3	1
217N	1	245	20	31	091	3	2	U	34	3	1
042B00	1	0.2	20	27	660	2	2	4	F0	2	1
238N	1	83	28	27	668	3	2	4	50	3	1
042B00	1	80	28	27	891	3	2	4	50	3	1
239N	1	80	20	27	091	3	2	4	30	3	1
042B00	1	70	30	17	877	3	2	0	16	3	1
254N	1	/0	30	17	0//	3	2	U	10	3	1
060B00	12	633	32	43	619	3	2	38	4	3	1
056N	12	033	32	43	1	5	2	36	4	3	1
060B00	12	168	32	27	112	3	2	10	18	3	1
070N	12	100	32	27	5	3	2	10	10		1
070B00	1	216	30	46	313	3	2	47	50	3	1
046N	1	210	30	40	0	3	2	47	30	3	1
071B00	3	204	43	20	173	3	2	14	15	3	1
097L	3	204	40	20	1	3	2	14	13		1
073B00	1	228	27	44	386	3	2	20	50	3	1
064N	1	220	27	7-7	300	3	2	20	30		1
073B00	1	140	31	31	112	3	2	17	48	3	1
138N	_	110	31	31	00	3	-	1,	10		-
076B00	7	93	93	17	341	3	2	2	6	3	1
099N	,	93	<i>)</i> 3	1,	00	J	_		0)	1
079B00	1	223	40	29	884	3	2	13	50	3	1
128N	1	223	40	23	2	3		12	30	3	1
079B00	1	51	28	22	255	3	2	7	45	3	1
135N	_		20		233	3	<u>-</u>	,			_
088B00	10	141	46	33	685	3	2	15	18	3	1
072N	10			33	0	3	_	13	10		_

088B00	10	252	40	24	255	3	2	3	23	3	1
081N					0						
098B00	12	289	28	29	182	3	2	15	16	3	1
186N					0						
119B00	10	74	40	19	150	3	2	3	25	3	1
062N			-		7					-	
015B00	5	289	24	29	50	3	2	18	6	3	2
071N									-		
030B00	2	206	86	18	146	3	2	8	50	3	2
155N	-				80		_				_
034B00	7	195	43	11	772	3	2	18	16	3	2
164L				_ _	8						
042B00	1	208	24	48	740	3	2	26	50	3	2
154R					0		_				_
042B00	1	189	38	48	320	3	2	14	40	3	2
162R					5		_	·			
042B00	1	97	38	48	320	3	2	12	50	3	2
163L		<i>-</i> .			5			_ _			
042B00	1	97	38	48	320	3	2	13	50	3	2
165L		<i>-</i> .			5		_ _				
042B00	1	208	38	48	320	3	2	9	50	3	2
166R					5		_				_
042B00	1	310	30	48	377	3	2	16	50	3	2
170R	*	310	30	.0	5	,	<u>-</u>	10	30		<u>-</u>
042B00	1	67	39	16	237	3	2	0	19	3	2
257N	1	0,	33	10	9	,	_		13		<u> </u>
045B00	9	464	60	12	520	3	2	20	30	3	2
082N	,	10-7	30	12	9	,	_	20	30		_
049B00	6	310	52	20	474	3	2	6	34	3	2
068N	U	310	J2	20	0	,	_		J 4	,	_

058B00	12	190	44	37	771	3	2	15	36	3	2
058N					5						
058B00	12	134	32	32	106	3	2	8	27	3	2
064N					00						
058B00	12	83	41	25	115	3	2	6	15	3	2
068N					0						
066B00	11	324	30	29	288	3	2	16	20	3	2
061N					0			_		_	
098B00	12	142	40	27	518	3	2	4	35	3	2
196N					0					_	
107B00	3	170	76	31	323	3	2	27	28	3	2
035N					8		_				_
021B00	6	259	44	41	142	3	2	19	36	3	3
045N					00		_				
022B00	9	357	38	44	101	3	2	16	47	3	3
083R	J				23		_				
041B00	6	290	41	14	115	3	2	4	7	3	3
048N					00		_	·			
047B00	4	303	44	19	555	3	2	44	14	3	3
156N	-				9		_				
056B00	5	103	85	26	585	3	2	32	41	3	3
426L		0			00		_	0_			
120B00	7	182	25	21	171	3	2	13	10	3	3
038N	•	102			0	3	_		10		3
018B00	1	87	23	70	272	3	1	7	30	1	1
024N	_	",	25	, 0	0	,	_	,	30	_	_
042B00	1	159	23	38	207	3	1	0	50	1	1
201N	-			33			_		30	_	_
059B00	6	547	36	32	753	3	1	10	50	1	1
081L	J	"	33	J2	7		_		30	_	_

064B00 058N	12	93	34	36	457	3	1	9	39	1	1
067B00 083N	12	343	62	41	941 6	3	1	37	7	1	1
070B00 065N	1	146 7	25	63	679 4	3	1	7	50	1	1
080B00 039N	12	164	33	16	385	3	1	0	21	1	1
097B00 056N	10	159	36	48	966 3	3	1	20	19	1	1
111B00 043N	1	262	27	42	61	3	1	27	28	1	1
003B00 060N	7	254	133	12	148 00	3	1	14	11	1	2
012B00 008N	6	159	26	54	826	3	1	22	40	1	2
026B00 061N	11	178	76	44	117 24	3	1	27	7	1	2
032B00 012N	9	114	24	65	250	3	1	2	40	1	2
033B00 019N	10	165	22	80	157 0	3	1	5	30	1	2
036B00 037L	12	308	45	42	985 0	3	1	24	50	1	2
036B00 077N	12	246	30	53	593 0	3	1	0	50	1	2
042B00 128N	1	215	26	48	673	3	1	25	50	1	2
053B00 022N	1	185	24	74	132 0	3	1	6	48	1	2

	ı	1							-	1	
059B00	6	207	40	37	260	3	1	28	9	1	2
073N			.0	0,	3		_			_	_
064B00						_		_		_	_
018N	12	121	20	78	808	3	1	4	34	1	2
079800		349			220						
	1		20	83		3	1	10	30	1	2
023N		6			0						
098B00	12	127	42	9	735	3	1	50	20	1	2
256L	12	6	72	3	0	3	_	30	20	_	2
036B00					289						
008N	12	84	30	60	0	3	1	2	30	1	3
036B00					127						
	12	358	28	52		3	1	30	50	1	3
086N					0						
051B00	2	191	26	45	500	3	1	27	34	1	3
073R	2	191	20	43	0	3	1	27	34		3
051B00					461						
074N	2	270	34	45	0	3	1	23	33	1	3
051B00	2	240	30	45	672	3	1	22	38	1	3
076N											
054B00	2	174	38	47	633	3	1	30	21	1	3
012R	2	1/4	36	47	7	3	1	30	21		3
084B00					525						
014R	7	200	30	50	0	3	1	20	14	1	3
018B00	1	140	44	19	686	3	2	7	50	1	1
120N					1						
019B00	6	165	82	26	975	3	2	17	40	1	1
067N	0	103	02	20	7	3		1/	40		1
053B00											
050N	1	222	28	48	278	3	2	16	50	1	1
					425						
042B00	1	211	38	48	435	3	2	9	48	1	2
177L					5						

052B00	-	175	27	26	262	3	2	24	12	1	2
075N	5	175	27	26	362	3	2	24	12	1	2
056B00	5	170	46	17	182	2	2	36	7	1	2
314L	5	170	40	17	50	3	2	30	,	1	2

Appendix E: Output of the Ordinal Logistic Regression for Sample One

GET
 FILE='C:\Users\jzh252\Desktop\Sample1.sav'.
DATASET NAME DataSet1 WINDOW=FRONT.
PLUM SEVERITY BY DISTRICT ABUT APPT FSC WITH LENGTH WIDTH AGE ADT EH
FSD
 /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5)
PCONVERGE(1.0E-6) SINGULAR(1.0E-8)
 /LINK=LOGIT

PLUM - Ordinal Regression

/PRINT=FIT PARAMETER SUMMARY TPARALLEL.

Warnings

There are 174 (66.7%) cells (i.e., dependent variable levels by observed combinations of predictor variable values) with zero frequencies.

Unexpected singularities in the Fisher Information matrix are encountered. There may be a quasi-complete separation in the data. Some parameter estimates will tend to infinity.

The PLUM procedure continues despite the above warning(s). Subsequent results shown are based on the last iteration. Validity of the model fit is uncertain.

Case Processing Summary

			Marginal
		N	Percentage
SEVERITY	1.00	14	16.1%
	2.00	36	41.4%
	3.00	37	42.5%
DISTRICT	1.00	4	4.6%
	4.00	4	4.6%
	5.00	11	12.6%
	6.00	30	34.5%
	7.00	9	10.3%
	9.00	5	5.7%
	10.00	3	3.4%
	11.00	18	20.7%
	12.00	3	3.4%
ABUT	1.00	18	20.7%
	2.00	10	11.5%
	3.00	59	67.8%
APPT	1.00	70	80.5%

	2.00	17	19.5%
FSC	1.00	7	8.0%
	2.00	31	35.6%
	3.00	30	34.5%
	4.00	19	21.8%
Valid		87	100.0%
Missing		0	
Total		87	

Model Fitting Information

	-2 Log			
Model	Likelihood	Chi-Square	df	Sig.
Intercept Only	177.953			
Final	147.035	30.918	20	.056

Link function: Logit.

Goodness-of-Fit

	Chi-Square	df	Sig.
Pearson	154.849	152	.421
Deviance	147.035	152	.599

Link function: Logit.

Pseudo R-Square

Cox and Snell	.299
Nagelkerke	.344
McFadden	.174

Link function: Logit.

Parameter Estimates

		raiaiiiele	i Latiniat	.03			
						95% Confidence Inter	
		Std.				Lower	Upper
	Estimate	Error	Wald	df	Sig.	Bound	Bound
Threshold [SEVERITY = 1.00]	-22.103	2.653	69.404	1	.000	-27.303	-16.903

_	-	-					i	
	[SEVERITY = 2.00]	-19.557	2.661	54.024	1	.000	-24.772	-14.342
Location	LENGTH	003	.001	4.263	1	.039	005	.000
	WIDTH	.000	.020	.000	1	.988	039	.038
	AGE	050	.015	10.820	1	.001	079	020
	ADT	-4.102E- 5	2.284E- 5	3.226	1	.072	-8.578E-5	3.739E-6
	EH	.024	.024	1.009	1	.315	022	.070
	FSD	.028	.022	1.641	1	.200	015	.070
	[DISTRICT=1.00]	-22.056	1.145	370.988	1	.000	-24.300	-19.812
	[DISTRICT=4.00]	-19.315	1.194	261.665	1	.000	-21.655	-16.975
	[DISTRICT=5.00]	-20.446	1.018	403.198	1	.000	-22.442	-18.451
	[DISTRICT=6.00]	-20.195	.662	931.737	1	.000	-21.492	-18.899
	[DISTRICT=7.00]	-20.271	.926	478.701	1	.000	-22.086	-18.455
	[DISTRICT=9.00]	-20.858	1.069	380.390	1	.000	-22.954	-18.762
	[DISTRICT=10.00]	-22.022	1.335	271.945	1	.000	-24.639	-19.405
	[DISTRICT=11.00]	-21.657	.000		1		-21.657	-21.657
	[DISTRICT=12.00]	O ^a			0			
	[ABUT=1.00]	3.555	2.474	2.065	1	.151	-1.293	8.404
	[ABUT=2.00]	1.646	.849	3.756	1	.053	019	3.311
	[ABUT=3.00]	O ^a			0			
	[APPT=1.00]	348	.678	.264	1	.607	-1.678	.981
	[APPT=2.00]	O ^a			0			
	[FSC=1.00]	2.226	2.483	.803	1	.370	-2.641	7.093
	[FSC=2.00]	2.502	2.329	1.154	1	.283	-2.062	7.067
	[FSC=3.00]	2.151	2.328	.854	1	.355	-2.412	6.714
	[FSC=4.00]	0 ^a			0			

Link function: Logit.

a. This parameter is set to zero because it is redundant.

Test of Parallel Lines^a

rest of rarance Lines									
	-2 Log								
Model	Likelihood	Chi-Square	df	Sig.					
Null Hypothesis	147.035								
General	116.451 ^b	30.584 ^c	20	.061					

The null hypothesis states that the location parameters (slope coefficients) are the same across response categories.

- a. Link function: Logit.
- b. The log-likelihood value cannot be further increased after maximum number of step-halving.
- c. The Chi-Square statistic is computed based on the log-likelihood value of the last iteration of the general model. Validity of the test is uncertain.

Appendix F: Output of the Multinomial Logistic Regression for Sample One

NOMREG SEVERITY (BASE=LAST ORDER=ASCENDING) BY DISTRICT ABUT APPT FSC WITH LENGTH WIDTH AGE ADT EH FSD

/CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) PCONVERGE(0.000001) SINGULAR(0.0000001) /MODEL

/STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) REMOVALMETHOD(LR)

/INTERCEPT=INCLUDE

/PRINT=CLASSTABLE FIT PARAMETER SUMMARY LRT CPS STEP MFI IC.

Nominal Regression

Warnings

There are 174 (66.7%) cells (i.e., dependent variable levels by subpopulations) with zero frequencies.

Unexpected singularities in the Hessian matrix are encountered. This indicates that either some predictor variables should be excluded or some categories should be merged.

The NOMREG procedure continues despite the above warning(s). Subsequent results shown are based on the last iteration. Validity of the model fit is uncertain.

Case Processing Summary

			Marginal
		N	Percentage
SEVERITY	1.00	14	16.1%
	2.00	36	41.4%
	3.00	37	42.5%
DISTRICT	1.00	4	4.6%
	4.00	4	4.6%
	5.00	11	12.6%
	6.00	30	34.5%
	7.00	9	10.3%
	9.00	5	5.7%
	10.00	3	3.4%
	11.00	18	20.7%
	12.00	3	3.4%
ABUT	1.00	18	20.7%
	2.00	10	11.5%
	3.00	59	67.8%

APPT	1.00	70	80.5%
	2.00	17	19.5%
FSC	1.00	7	8.0%
	2.00	31	35.6%
	3.00	30	34.5%
	4.00	19	21.8%
Valid		87	100.0%
Missing		0	
Total		87	
Subpopula	ation	87ª	

a. The dependent variable has only one value observed in 87 (100.0%) subpopulations.

Model Fitting Information

	· · · · · · · · · · · · · · · · · · ·								
	N	lodel Fitting	Criteria	Likelihood Ratio Tests					
		-2 Log							
Model	AIC	BIC	Likelihood	Chi-Square	df	Sig.			
Intercept Only	181.953	186.885	177.953						
Final	199.383	302.951	115.383	62.570	40	.013			

Goodness-of-Fit

	Chi-Square	df	Sig.	
Pearson	120.916	132	.746	
Deviance	115.383	132	.848	

Pseudo R-Square

Cox and Snell	.513
Nagelkerke	.589
McFadden	.352

Likelihood Ratio Tests

	N	Model Fitting Criteri	Likelih	ood Ratio Te	ests	
			-2 Log			
	AIC of Reduced	BIC of Reduced	Likelihood of			
Effect	Model	Model	Reduced Model	Chi-Square	df	Sig.
Intercept	199.383	302.951	115.383ª	.000	0	
LENGTH	197.334	295.970	117.334	1.950	2	.377
WIDTH	196.110	294.746	116.110	.727	2	.695
AGE	209.661	308.297	129.661	14.278	2	.001
ADT	197.052	295.689	117.052	1.669	2	.434
EH	197.560	296.196	117.560	2.176	2	.337
FSD	201.448	300.084	121.448	6.065	2	.048
DISTRICT	204.321	268.434	152.321	36.938	16	.002
ABUT	196.157	289.861	120.157	4.773	4	.311
APPT	198.496	297.133	118.496	3.113	2	.211
FSC	191.905	280.677	119.905	4.521	6	.606

The chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced model.

The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0.

a. This reduced model is equivalent to the final model because omitting the effect does not increase the degrees of freedom.

Parameter Estimates

							95% Co	nfidence
							Interval f	or Exp(B)
		Std.					Lower	Upper
SEVERITYa	В	Error	Wald	df	Sig.	Exp(B)	Bound	Bound
1.00 Intercept	11.264	2463.658	.000	1	.996			
LENGTH	.003	.002	1.663	1	.197	1.003	.998	1.007
WIDTH	013	.058	.047	1	.829	.988	.881	1.107
AGE	.131	.048	7.457	1	.006	1.140	1.038	1.252
ADT	.000	.000	1.870	1	.172	1.000	1.000	1.000
EH	084	.063	1.809	1	.179	.919	.813	1.039
FSD	175	.091	3.709	1	.054	.839	.702	1.003
[DISTRICT=1.00]	21.483	2463.657	.000	1	.993	2137345651.087	.000	.b
[DISTRICT=4.00]	1.767	3096.612	.000	1	1.000	5.852	.000	.b
[DISTRICT=5.00]	3.722	2894.902	.000	1	.999	41.327	.000	,b

									_
	[DISTRICT=6.00]	17.908	2463.656	.000	1	.994	59907624.950	.000	.b
	[DISTRICT=7.00]	1.751	2717.319	.000	1	.999	5.758	.000	.b
	[DISTRICT=9.00]	4.132	2913.733	.000	1	.999	62.309	.000	.b
	[DISTRICT=10.00]	24.518	2463.658	.000	1	.992	44467382271.204	.000	.b
	[DISTRICT=11.00]	20.706	2463.656	.000	1	.993	982595954.472	.000	.b
	[DISTRICT=12.00]	0c			0				
	[ABUT=1.00]	- 37.279	2.821	174.608	1	.000	6.457E-17	2.563E- 19	1.627E- 14
	[ABUT=2.00]	- 16.258	1288.134	.000	1	.990	8.695E-8	.000	.b
	[ABUT=3.00]	0c			0				
	[APPT=1.00]	-1.622	1.493	1.181	1	.277	.197	.011	3.681
	[APPT=2.00]	0°			0	-			
	[FSC=1.00]	- 32.712	2.060	252.053	1	.000	6.212E-15	1.095E- 16	3.525E- 13
	[FSC=2.00]	- 29.828	1.434	432.457	1	.000	1.111E-13	6.680E- 15	1.848E- 12
	[FSC=3.00]	30.989	.000		1		3.480E-14	3.480E- 14	3.480E- 14
	[FSC=4.00]	0c			0				
2.00		-4.972	4161.044	.000	1	.999			
	LENGTH	.000	.002	.055	1	.814	1.000	.996	1.004
	WIDTH	.021	.029	.528	1	.467	1.022	.964	1.082
	AGE	.014	.018	.606	1	.436	1.014	.978	1.052
	ADT	.000	.000	.001	1	.973	1.000	1.000	1.000
	EH	016	.030	.279	1	.598	.985	.929	1.043
	FSD	004	.026	.027	1	.869	.996	.947	1.047
	[DISTRICT=1.00]	18.093	2349.030	.000	1	.994	72037379.865	.000	.b
	[DISTRICT=4.00]	16.967	2349.029	.000	1	.994	23373245.447	.000	.b
	[DISTRICT=5.00]	19.462	2349.030	.000	1	.993	283228462.428	.000	.b
	[DISTRICT=6.00]	16.612	2349.029	.000	1	.994	16392243.251	.000	.b
	[DISTRICT=7.00]	17.134	2349.029	.000	1	.994	27625984.370	.000	.b
	[DISTRICT=9.00]	17.776	2349.029	.000	1	.994	52474867.233	.000	.b
	[DISTRICT=10.00]	17.041	2349.030	.000	1	.994	25171888.908	.000	.b
	[DISTRICT=11.00]	16.859	2349.029	.000	1	.994	20970639.872	.000	.b
	[DISTRICT=12.00]	0c			0				

[ABUT=1.00]	- 13.840	3434.581	.000	1	.997	9.762E-7	.000	.b
[ABUT=2.00]	075	.993	.006	1	.940	.927	.132	6.493
[ABUT=3.00]	0c			0				
[APPT=1.00]	.898	.878	1.045	1	.307	2.453	.439	13.716
[APPT=2.00]	0c			0				
[FSC=1.00]	13.082	3434.581	.000	1	.997	2.083E-6	.000	.b
[FSC=2.00]	- 14.185	3434.581	.000	1	.997	6.914E-7	.000	,b
[FSC=3.00]	- 13.552	3434.581	.000	1	.997	1.301E-6	.000	,b
[FSC=4.00]	0c			0				

a. The reference category is: 3.00.

c. This parameter is set to zero because it is redundant.

Classification

	Predicted					
Observed	1.00	2.00	3.00	Percent Correct		
1.00	11	1	2	78.6%		
2.00	2	22	12	61.1%		
3.00	3	8	26	70.3%		
Overall Percentage	18.4%	35.6%	46.0%	67.8%		

b. Floating point overflow occurred while computing this statistic. Its value is therefore set to system missing.

Appendix G: Output of the Ordinal Logistic Regression for Sample Two

```
GET
   FILE='C:\Users\jzh252\Desktop\Sample2.sav'.
DATASET NAME DataSet1 WINDOW=FRONT.
PLUM SEVERITY BY DISTRICT ABUT APPT FSC WITH LENGTH WIDTH AGE ADT EH
FSD
   /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5)
PCONVERGE(1.0E-6) SINGULAR(1.0E-8)
   /LINK=LOGIT
   /PRINT=FIT PARAMETER SUMMARY TPARALLEL.
```

PLUM - Ordinal Regression

Warnings

There are 1198 (66.7%) cells (i.e., dependent variable levels by observed combinations of predictor variable values) with zero frequencies.

Unexpected singularities in the Fisher Information matrix are encountered. There may be a quasi-complete separation in the data. Some parameter estimates will tend to infinity.

The PLUM procedure continues despite the above warning(s). Subsequent results shown are based on the last iteration. Validity of the model fit is uncertain.

Case Processing Summary

			Marginal
		N	Percentage
SEVERITY	1.00	192	32.0%
	2.00	273	45.5%
	3.00	135	22.5%
DISTRICT	1.00	167	27.8%
	2.00	18	3.0%
	3.00	28	4.7%
	4.00	1	0.2%
	5.00	36	6.0%
	6.00	68	11.3%
	7.00	72	12.0%
	8.00	2	0.3%
	9.00	30	5.0%
	10.00	34	5.7%

	l i		
	11.00	45	7.5%
	12.00	99	16.5%
ABUT	1.00	151	25.2%
	2.00	72	12.0%
	3.00	377	62.8%
APPT	1.00	467	77.8%
	2.00	133	22.2%
FSC	1.00	35	5.8%
	2.00	170	28.3%
	3.00	171	28.5%
	4.00	224	37.3%
Valid		600	100.0%
Missing		0	
Total		600	

Model Fitting Information

Model i ittilig illioi illation						
	-2 Log					
Model	Likelihood	Chi-Square	df	Sig.		
Intercept Only	1270.242					
Final	1009.932	260.310	23	.000		

Link function: Logit.

Goodness-of-Fit

	Chi-Square	df	Sig.
Pearson	1159.928	1173	.601
Deviance	1009.932	1173	1.000

Link function: Logit.

Pseudo R-Square

Cox and Snell	.352
Nagelkerke	.400
McFadden	.205

Link function: Logit.

_			Paramete	r Estima	ies			
							95% Confide	ence Interval
			Std.				Lower	Upper
		Estimate	Error	Wald	df	Sig.	Bound	Bound
Threshold	[SEVERITY = 1.00]	1.533	.656	5.462	1	.019	.247	2.819
	[SEVERITY = 2.00]	4.380	.682	41.194	1	.000	3.043	5.718
Location	LENGTH	.000	.000	1.101	1	.294	.000	.001
	WIDTH	.006	.005	1.729	1	.189	003	.015
	AGE	.017	.005	13.194	1	.000	.008	.026
	ADT	1.910E- 5	6.424E- 6	8.841	1	.003	6.510E-6	3.169E-5
	EH	.005	.008	.307	1	.580	012	.021
	FSD	.002	.008	.085	1	.771	013	.017
	[DISTRICT=1.00]	-1.124	.269	17.487	1	.000	-1.651	597
	[DISTRICT=2.00]	2.992	.566	27.896	1	.000	1.881	4.102
	[DISTRICT=3.00]	258	.428	.363	1	.547	-1.097	.581
	[DISTRICT=4.00]	21.369	.000		1		21.369	21.369
	[DISTRICT=5.00]	1.870	.432	18.748	1	.000	1.023	2.716
	[DISTRICT=6.00]	.753	.336	5.029	1	.025	.095	1.411
	[DISTRICT=7.00]	2.234	.341	42.970	1	.000	1.566	2.902
	[DISTRICT=8.00]	2.170	1.492	2.115	1	.146	754	5.094
	[DISTRICT=9.00]	1.699	.424	16.091	1	.000	.869	2.529
	[DISTRICT=10.00]	-1.236	.417	8.790	1	.003	-2.054	419
	[DISTRICT=11.00]	.850	.369	5.302	1	.021	.126	1.573
	[DISTRICT=12.00]	O ^a			0			
	[ABUT=1.00]	.570	.530	1.155	1	.282	469	1.609
	[ABUT=2.00]	.706	.554	1.626	1	.202	379	1.792
	[ABUT=3.00]	0 ^a			0			
	[APPT=1.00]	.529	.219	5.825	1	.016	.099	.958
	[APPT=2.00]	0 ^a			0			
	[FSC=1.00]	.316	.636	.247	1	.619	931	1.564
	[FSC=2.00]	.601	.558	1.158	1	.282	493	1.694
	[FSC=3.00]	.731	.541	1.826	1	.177	329	1.791

[FSC=4.00]	0 ^a		0		
[1 00-1:00]	•	•)		•

Link function: Logit.

a. This parameter is set to zero because it is redundant.

Test of Parallel Lines^a

Model	-2 Log Likelihood	Chi-Square	df	Sia.
Null Hypothesis	1009.932	'		<u> </u>
General	978.310	31.621	23	.108

The null hypothesis states that the location parameters (slope coefficients) are the same across response categories.

a. Link function: Logit.

Appendix H: Output of the Multinomial Logistic Regression for Sample Two

NOMREG SEVERITY (BASE=LAST ORDER=ASCENDING) BY DISTRICT ABUT APPT FSC WITH LENGTH WIDTH AGE ADT EH FSD

/CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) PCONVERGE(0.000001) SINGULAR(0.0000001) /MODEL

/STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) REMOVALMETHOD(LR)

/INTERCEPT=INCLUDE

/PRINT=CLASSTABLE FIT PARAMETER SUMMARY LRT CPS STEP MFI IC.

Nominal Regression

Warnings

There are 1198 (66.7%) cells (i.e., dependent variable levels by subpopulations) with zero frequencies.

Unexpected singularities in the Hessian matrix are encountered. This indicates that either some predictor variables should be excluded or some categories should be merged.

The NOMREG procedure continues despite the above warning(s). Subsequent results shown are based on the last iteration. Validity of the model fit is uncertain.

Case Processing Summary

			Marginal
		N	Percentage
SEVERITY	1.00	192	32.0%
	2.00	273	45.5%
	3.00	135	22.5%
DISTRICT	1.00	167	27.8%
	2.00	18	3.0%
	3.00	28	4.7%
	4.00	1	0.2%
	5.00	36	6.0%
	6.00	68	11.3%
	7.00	72	12.0%
	8.00	2	0.3%
	9.00	30	5.0%
	10.00	34	5.7%

	1		l l
	11.00	45	7.5%
	12.00	99	16.5%
ABUT	1.00	151	25.2%
	2.00	72	12.0%
	3.00	377	62.8%
APPT	1.00	467	77.8%
	2.00	133	22.2%
FSC	1.00	35	5.8%
	2.00	170	28.3%
	3.00	171	28.5%
	4.00	224	37.3%
Valid		600	100.0%
Missing		0	
Total		600	
Subpopula	ation	599ª	

a. The dependent variable has only one value observed in 599 (100.0%) subpopulations.

Model Fitting Information

	Model Fitting Criteria			Likelih	ood Ratio Te	ests	
			-2 Log				
Model	AIC	BIC	Likelihood	Chi-Square	df	Sig.	
Intercept Only	1274.242	1283.035	1270.242				
Final	1080.788	1291.841	984.788	285.453	46	.000	

Goodness-of-Fit

	Chi-Square	df	Sig.
Pearson	1128.538	1150	.669
Deviance	984.788	1150	1.000

Pseudo R-Square

Cox and Snell	.379
Nagelkerke	.430
McFadden	.225

Likelihood Ratio Tests

	N	lodel Fitting Criter	Likelihood Ratio Tests			
			-2 Log			
	AIC of Reduced	BIC of Reduced	Likelihood of			
Effect	Model	Model	Reduced Model	Chi-Square	df	Sig.
Intercept	1080.788	1291.841	984.788ª	.000	0	
LENGTH	1079.497	1281.756	987.497	2.709	2	.258
WIDTH	1080.640	1282.899	988.640	3.852	2	.146
AGE	1091.009	1293.268	999.009	14.220	2	.001
ADT	1086.452	1288.711	994.452	9.664	2	.008
EH	1076.984	1279.243	984.984	.196	2	.907
FSD	1078.155	1280.414	986.155	1.367	2	.505
DISTRICT	1221.284	1335.604	1169.284	184.496	22	.000
ABUT	1076.706	1270.171	988.706	3.917	4	.417
APPT	1083.444	1285.703	991.444	6.655	2	.036
FSC	1071.878	1256.549	987.878	3.089	6	.798

The chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0.

a. This reduced model is equivalent to the final model because omitting the effect does not increase the degrees of freedom.

Parameter Estimates

							95% Co	
		Std.					Lower	Upper
SEVERITY ^a	В	Error	Wald	df	Sig.	Exp(B)	Bound	Bound
1.00 Intercept	4.624	1.157	15.986	1	.000			
LENGTH	001	.001	.731	1	.393	.999	.998	1.001
WIDTH	015	.010	2.507	1	.113	.985	.966	1.004
AGE	029	.008	12.243	1	.000	.972	.956	.987
ADT	.000	.000	4.229	1	.040	1.000	1.000	1.000
EH	006	.015	.150	1	.699	.994	.966	1.023
FSD	003	.013	.056	1	.813	.997	.972	1.023
[DISTRICT=1.00]	2.278	.576	15.612	1	.000	9.754	3.151	30.188

_		<u>L</u>	•			,	-	, .	•
	[DISTRICT=2.00]	- 18.812	1870.596	.000	1	.992	6.761E-9	.000	.b
	[DISTRICT=3.00]	.452	.696	.422	1	.516	1.571	.402	6.146
	[DISTRICT=4.00]	-						8.827E-	8.827E-
		20.848	.000		1		8.827E-10	10	10
	[DISTRICT=5.00]	-3.749	1.130	11.006	1	.001	.024	.003	.216
	[DISTRICT=6.00]	980	.548	3.193	1	.074	.375	.128	1.099
	[DISTRICT=7.00]	-2.714	.562	23.316	1	.000	.066	.022	.199
	[DISTRICT=8.00]	- 17.614	4267.729	.000	1	.997	2.241E-8	.000	.b
	[DISTRICT=9.00]	-2.427	.745	10.619	1	.001	.088	.021	.380
	[DISTRICT=10.00]	16.495	1218.838	.000	1	.989	14581852.469	.000	.b
	[DISTRICT=11.00]	-1.356	.674	4.055	1	.044	.258	.069	.964
	[DISTRICT=12.00]	0c			0				
	[ABUT=1.00]	749	.901	.690	1	.406	.473	.081	2.767
	[ABUT=2.00]	-1.246	.963	1.676	1	.196	.288	.044	1.898
	[ABUT=3.00]	0c			0				
	[APPT=1.00]	977	.392	6.215	1	.013	.376	.175	.811
	[APPT=2.00]	0c			0				
	[FSC=1.00]	188	1.088	.030	1	.863	.829	.098	6.988
	[FSC=2.00]	718	.950	.572	1	.450	.488	.076	3.137
	[FSC=3.00]	-1.026	.915	1.257	1	.262	.359	.060	2.154
	[FSC=4.00]	0 ^c			0				
2.00	Intercept	2.423	.913	7.050	1	.008			
	LENGTH	.000	.001	.052	1	.820	1.000	.999	1.001
	WIDTH	.002	.005	.094	1	.759	1.002	.991	1.012
	AGE	009	.007	2.041	1	.153	.991	.978	1.004
	ADT	.000	.000	5.707	1	.017	1.000	1.000	1.000
	EH	005	.012	.176	1	.675	.995	.972	1.019
	FSD	.007	.011	.423	1	.515	1.007	.986	1.029
	[DISTRICT=1.00]	1.549	.561	7.631	1	.006	4.708	1.568	14.134
	[DISTRICT=2.00]	-1.907	.606	9.893	1	.002	.149	.045	.487
	[DISTRICT=3.00]	.176	.656	.072	1	.788	1.193	.330	4.311
	[DISTRICT=4.00]	20.103	.000		1		1.859E-9	1.859E-9	1.859E-9
	[DISTRICT=5.00]	969	.504	3.696	1	.055	.380	.141	1.019

-						,		_
[DISTRICT=6.00]	140	.452	.096	1	.756	.869	.358	2.109
[DISTRICT=7.00]	-1.580	.423	13.946	1	.000	.206	.090	.472
[DISTRICT=8.00]	-1.072	1.529	.491	1	.483	.342	.017	6.860
[DISTRICT=9.00]	830	.504	2.709	1	.100	.436	.162	1.171
[DISTRICT=10.00]	15.721	1218.838	.000	1	.990	6720042.522	.000	.b
[DISTRICT=11.00]	.193	.501	.149	1	.700	1.213	.455	3.235
[DISTRICT=12.00]	Oc			0				
[ABUT=1.00]	319	.690	.214	1	.644	.727	.188	2.812
[ABUT=2.00]	082	.708	.014	1	.907	.921	.230	3.689
[ABUT=3.00]	0c			0				
[APPT=1.00]	525	.343	2.344	1	.126	.592	.302	1.159
[APPT=2.00]	0c			0				
[FSC=1.00]	383	.846	.205	1	.651	.682	.130	3.583
[FSC=2.00]	662	.722	.841	1	.359	.516	.125	2.123
[FSC=3.00]	846	.694	1.486	1	.223	.429	.110	1.672
[FSC=4.00]	0c			0				

- a. The reference category is: 3.00.
- b. Floating point overflow occurred while computing this statistic. Its value is therefore set to system missing.
- $\ensuremath{\text{c.}}$ This parameter is set to zero because it is redundant.

Classification

	Predicted						
Observed	1.00	2.00	3.00	Percent Correct			
1.00	122	62	8	63.5%			
2.00	70	168	35	61.5%			
3.00	8	54	73	54.1%			
Overall Percentage	33.3%	47.3%	19.3%	60.5%			

BIBLIOGRAPHY

Abendroth, R. E., Greimann, L.F., and LaViolette, M. D. (2007). "An Integral Abutment Bridge With Precast Concrete Piles." *Final Rep., IHRB Project TR-438, CTRE Project No.* 99-48, IOWA Department of Transportation, Ames, Iowa.

Abu-Hejleh, N., Hanneman, D., White, D. J., and Ksouri, I. (2006). "Flowfill and MSE Bridge Approaches: Performance, Cost and Recommendations for Improvements." *Report No. CDOT-DTD-R-2006-2*. Colorado Department of Transportation, Denver.

Albajar, L., Gascón, C., Hernando, A., and Pacheco, J. (2005). "Transiciones de Obra de Paso-Terraplén. Aproximación al Estado del Arte y Experiencias Españolas." Asociación Técnica de Carreteras, Ministerio de Fomento.

Anand J. Puppala, Sireesh Saride, and Ekarut Archeewa (2009). "Recommendations for Design, Construction, and Maintenance of Bridge Approach Slabs." *Synthesis Report, FHWA/TX-09/0-6022-1*, Texas Department of Transportation, El Paso, Texas.

Ardani, A. (1987). "Bridge Approach Settlement", *Report No. CDOT-DTP-R-87-06*, Colorado Department of Highways, Denver, CO.

Arsoy, S., Barker, R.M. and Duncan, J.M. (1999). "The behavior of Integral Abutment Bridges (Final Report)." *Report No. FHWA/VTRC00-CR3*. Virginia Department of Transportation.

Arsoy, S., Duncan, J.M. and Barker, R.M. (2002). "Performance of Piles Supporting Integral Bridges." Transportation Research Record 1808, Washington, D.C.

Bakeer, M., Shutt, M., Zhong, J., Das, S., and Morvant, M. (2005). "Performance of Pile-Supported Bridge Approach Slabs." *Journal of Bridge Engineering*, ASCE, 10.1061/(ASCE) 1084-0702(2005)10:2(228), 228-237

Bozozuk, M. (1978). "Bridge Foundations Move. Transportation Research Record 678: Tolerable Movements of Bridge Foundations, Sand Drains, K-Test, Slopes, and Culverts." Transportation Research Board, National Research Council, Washington, D.C. 17–21.

Briaud, J. L., James, R. W., and Hoffman, S. B. (1997). "Settlement of Bridge Approaches (the bump at the end of the bridge)." *NCHRP Rep. No. 234*, Transportation Research Board, National Research Council, Washington, D.C.

Burke, M.P. (1993). "Integral bridges: attributes and limitations." *Transportation Research Record 1393 p. 1-8*. Transportation Research Board, 75th Annual Meeting.

Chini, S.A., Wolde-Tinsae, A.M., and Aggour, M. S. (1992). "Drainage and Backfill Provisions for Approaches to Bridges." Maryland Department of Transportation.

Cotton, D. M., Kilian, A. P., and Allen, T. (1987). "Westbound Embankment Preload on Rainier Avenue, Seattle, Washington." *Transportation Research Record No. 1119*, Transportation Research Board, Washington D.C., 61-75.

Das, S. C., Bakeer, R., Zhong, J., and Schutt, M. (1990). "Assessment of mitigation embankment settlement with pile supported approach slabs." Louisiana Transportation and Research Center, Baton Rouge, LA.

Du, L., Arellano, M., K. J. Folliard, Nazarian, S., and Trejo, D. (2006). "Rapid-Setting CLSM for Bridge Approach Repair: A Case Study." *ACI Material Journal*. September-October 2006, 312-318.

Dupont, B., and D. L. Allen. (2002). "Movements and settlements of highway bridge approaches." *KTC-02-18/SPR-220-00-1F*, Kentucky Transportation Center, Lexington, KY.

Federal Highway Administration (2000). "Priority, Market-Ready Technologies and Innovations", *Rep. No. FHWA-HRT-04-053*, Transportation Research Board, Washington, D.C.

Folliard, K.J., Du, L., Trejo, D., Halmen, C., Sabol, S., and Leshchinsky, D. (2008). "Development of a Recommended Practice for Use of Controlled Low-Strength Material in Highway Construction." *NCHRP Synthesis of Highway Practice No. 597*, Transportation Research Board, Washington D.C.

Gaorbanpoor, Al, Koutnik, Therese Ellen, Helwany, Sam (2007), "Evaluation of Bridge Approach Settlement Mitigation Methods." *Wisconsin Highway Research Program*, Wisconsin Department of Transportation, Milwaukee, WI.

Girton, D.D, Hawkinson, T.R and Greimann, L.F. (1991). "Validation of Design Recommendations for Integral-Abutment Piles." *Journal of Structural Engineering*, Vol. 117, No.7.

Greimann, L. F., Yang, Pe-Shen, Wolde-Tinsae, and made M. (1986). "*Nonlinear Analysis of Integral Abutment Bridges*." Journal of Structural Engineering, Vol. 112, No. 10, 2263-2280.

Greimann, L. F. and Wolde-Tinsae, A. M. (1988). "Design model for piles in jointless bridges." *Journal of Structural Engineering*, ASCE, 114(6), 1354-1371.

Grover, R. A. (1978), "Movements of bridge abutments and settlements of approach pavements in Ohio." *Journal of Transportation Research Record*, N678, pp. 12—17.

Hannigan, P.J., Goble, G.G., Thendean, G., Likins, G.E., and Rausche, F. (1998). "Design and Construction of Driven Pile Foundations – Volume I." *Report No. FHWA-HI-97-013*, Federal Highway Administration, Washington, D.C.

Hannon, J. B. and Walsh, T. J. (1982), "Wick drains, membrane reinforcement, and lightweight fill for embankment construction at Dumbarton." *Transportation Research Record, TRB, N897*, pp. 37—42.

Hearn, George (1997), "Faulted pavements at bridge abutments." *Report CDOT-DTD-97-11*, Colorado Department of Transportation, Boulder, CO.

Holtz, R. (1982). *Treatment of Problem Foundation for Highway Embankments*. Transportation Research Board, Washington, D.C.

Hopkins, T.C. (1969), "Settlement of highway bridge approaches and embankment foundations." *Interim Report, KYHPR-64-17; HPR-1(4), Part II*, Dept. of Highways, Lexington, KY.

Hopkins, T.C. (1973). "Settlement of highway bridge approaches and embankment foundations, Bluegrass Parkway Bridges over Chaplin River." Kentucky Dept. of Highway, N 356, Feb. 1973, Interim 39, PP 35.

Hopkins, T.C. (1985), "Long-term movements of high-way bridge approach embankments and pavements." *A draft report, UKTRP-85-12*, Kentucky Transportation Research Program, Lexington, KY.

Hoppe, E. J. (1999). "Guidelines for the Use, Design, and Construction of Bridge Approach Slabs." Virginia Department of Transportation, Charlottesville, VA.

Horvath, J. S. (1991). "Using Geosynthetics to Reduce Surcharge-Induced Stresses on Rigid Earth Retaining Structures." *Transportation Research Record* 1330, PP 47-53.

Horvath, J. S. (2000). "Integral Abutment Bridges: Problem and Innovative Solutions Using EPS Geofoam and other Geosynthetics." *Research Report No. CE/GE-00-2*, Bronx, New York

Horvath, J. S. (2005). "Integral-Abutment Bridges: Geotechnical Problems and Solutions Using Geosynthetics and Ground Improvement." *IAJB 2005 - The 2005 FHWA Conference on Integral Abutment and Jointless Bridges.* 16-18 March, Baltimore, Maryland, USA.

Hsi, J. and Martin, J. (2005). "Soft Ground Treatment and Performance, Yelgun to Chinderah Freeway, New South Wales, Australia." *In Ground Improvement-Case Histories*, Elsevier Geo-Engineering Book Series, Volume 3, 563-599.

Hughes, F. H. (1981), "Vertical drains accelerate consolidation settlement under bridge approach embankments." Highways and Public Works, Vol. 49, No. 1858, P. 8.

Irick, P. E. and Copas, T. L. (1969), "Bridge approach design and construction practices", *NCHRP Synthesis of Highway Practice 2*, Highway Research Board, Washington, D.C.

James, R.W., Zhang, H., and Zollinger, D.G. (1991). "Observations of severe abutment backwall damage." *Transportation Research Record 1319*, Transportation Research Board, 55-61.

Jayawickrama, P., Nash, P., Leaverton, M. and Mishra, D. (2005). "Water Intrusion in Base/Subgrade Materials at Bridge Ends." *TxDOT Report*, *FHWA/TX-06/0-5096-1*, Texas Tech University, Lubbock, TX.

Kentucky Transportation Cabinet. (2005). "Kentucky Structural Design Manual." Frankfort, KY.

Kentucky Transportation Cabinet. (2005). "Kentucky Structural Design Manual, Special Provision 69, Embankment at Bridge End Bent Structures." Kentucky Transportation Cabinet, Frankfort, KY

Kentucky Transportation Cabinet. (2005). Standard Drawings RGX-100 and RGX-105, "Treatment of Embankment at Bridge End-Bent Structures." Kentucky Transportation Cabinet, Frankfort, KY.

Kramer, S.L., and Sajer, P. (1991). "Bridge Approach Slab Effectiveness." Washington State Transportation Center, Seattle, WA.

Kemahli, A. S. (1971), "A different approach to bridge approach slabs." Highway Focus, Vol. 3, No. 3, pp. 23-80.

Laguros, J. G., Zaman, M. M., and Mahmood, I. U. (1990). "Evaluation of Causes of Excessive Settlements of Pavements Behind Bridge Abutments and their Remedies; Phase II. (Executive Summary)." *Rep. No. FHWA/OK 89 (07)*, Oklahoma Department of Transportation, OK.

Laguros, J. G., Zaman, M. M., and Mahmood, I. U. (1990b). "Evaluation of Causes of Excessive Settlements of Pavements Behind Bridge Abutments and their Remedies; Phase I". Oklahoma Department of Transportation, OK.

Lawver, A., French, C. and Shield, C.K. (2000). "Field Performance of Integral Abutment Bridges." *Transportation Research Record 1740*, Washington D.C.

Lenke, L. R. (2006). "Settlement Issues-Bridge Approach Slabs." *Rep. No. NM04MNT-02*, New Mexico Department of Transportation. NM.

Long, J.H., Olson, S.M. and Stark, T.D. (1998). "Differential Movement at Embankment/Bridge Structure Interface in Illinois." *Transportation Research Record No.* 1633, Transportation Research Board, Washington, D.C., 53-60.

Margason, G.A. (1963), "A study of settlement at a number of bridge approaches on the Maidenhead By-Pass." *Chartered Mun. Eng. (England)*, Vol. 90, pp. 134-138.

Margason, G.A. (1970), "Settlement behind bridge abutments. The performance of a stony clay fill in an approach embankment to an overbridge on the M4 Motorway." Ministry of Transport, London, UK, RRL Rept, Lr 311.

MaLaren, D. (1967), "Settlement behind bridge abutments." *RRL Report LR 76*, Road Research Laboratory, Crowthorn, Gt. Britain, 18 pp.

Mahmood, I.U. (1990). "Evaluation of Causes of Bridge Approach Settlement and Development of Settlement Prediction Models." Ph.D. Thesis, University of Oklahoma, Norman.

Martin, R. D., and Kang, T. (2013). "Structural Design and Construction Issues of Approach Slabs." *Pract. Period. Struct. Des. Constr.*, 10.1061/(ASCE)SC.1943-5576.0000133, 12-20.

Michael, E. Schmitz (2004), "Use of Controlled Low-Strength Material as Abutment Backfill." *Report No. K-TRAN: KU-02-6*, Kansas Department of Transportation, Lawrence, KA.

Nassif, H. (2002). "Finite Element Modeling of Bridge Approach and Transition Slabs." *Rep. No. FHWA-NJ-2002-007*, Department of Civil and Environmental Engineering, Center for Advanced Infrastructure and Transportation (CAIT), Rutgers, New Jersey.

Nicks, Jennifer Elizabeth (2012), "The Bump at the End of the Railway Bridge." PhD Thesis Research Report, Texas A&M University.

Pierce, C. E., Baus, R. L., Harries, K. A., and Yang, W. (2001). "Investigation into Improvement of Bridge Approaches in South Carolina," *Summary Report, Rep. No. FHWA-SC-01-02*, South Carolina Department of Transportation.

Puppala, A. J., Saride, S., Archeewa, E., Hoyos, L. R. and Nazarian, S. (2008), "Recommendations for Design, Construction, and Maintenance of Bridge Approach Slabs: Synthesis Report." *Report No. 0-6022-1*, Texas Department Transportation.

Robert L. Parsons, Stephen A. Cross (2001), "Compaction and settlement of existing embankments", *Report KTRAN: KU-00-8*, Kansas Department of Transportation, Topeka, Kansas.

Ronaldo Luna, Jonathan L. Robison, Andrew Wilding, "Evaluation of bridge approach slabs, performance and design." *Report No. UTC R80*, Center for Infrastructure Engineering Studies/UTC program, Rolla, MO.

Sabatini, P.J., Elisa, V., Schmertmann, G.R., and Bonaparte, R. (February 1997). "Geotechnical Engineering Circular No. 2" *Report No. FHWA-SA-96-038*, Federal Highway Administration, Washington, D.C.

Sam Helwany, Therese E. K., Al Ghorbanpoor (2007), "Evaluation of Bridge Approach Settlement Mitigation Methods". Wisconsin Department of Transportation, Milwaukee, WI.

Sankar, C. Das, Reda Barkeer (1999), "Assessment of mitigating embankment settlement with pile supported approach slabs." *Report 97-4GT*, Louisiana Transportation and Research Center, Baton Rouge, Louisiana.

Schaefer, V. R. and Koch, J. C. (November 1992). "Void Development under Bridge Approaches." *Report No. SD90-03*, South Dakota Department of Transportation, Pierre, 147 pp.

Shields, D. H.; Deschenes, J. H.; Scott, J. D.; Bauer, G. E. and Young, F. D. (1980), "Advantages of founding bridge abutments on approach fills – with discussion." *RTAC Forum*, Road and Transportation Association of Canada, Vol. 3, No. 1, pp. 7—16.

Smadi, O. (2001). "The strength of flowable mortar." http://www.ctre.iastate.edu/PUBS/tech_news/2001/julaug/flowable_mortar.pdf

Snethen, D. R. and Benson, J. M. (1998). "Construction of CLSM Approach Embankment to Minimize the Bump at the End of the Bridge." *The Design and Application of Controlled Low-Strength Materials (Flowable Fill)*, ASTM STP 1331.

Stark, T.D., Olson, S. M., Long, J.H. (1995). "Differential Movement at the Embankment/Structure Interface – Mitigation and Rehabilitation," *Report No. IAB-H1, FY 93*, Illinois Department of Transportation, Springfield, Illinois.

Steward, C. F. (1985), "Highway Structure approaches." *Report No. FHWA/CA/SD-85-05*, Federal Highway Administration,.

Tadros, M. K, and Benak, J. V. (1989). "Bridge Abutment and Bridge Approach slab Settlement, Phase I". Final Report, Nebraska Department of Roads.

Unified Facilities Criteria (UFC). (2004). "Pavement Design For Roads, Streets, Walk, and Open Storage Area." *Rep. No. UFC 3-250-01FA*, US Army Corps of Engineers.

Valtonen, M. and Faerkkilae, H. (1984), "A reinforced road embankment on soft soil." *Proc. Nordic Geotechnical Congress*, Swedish Geotechnical Institute, pp. 215—222.

Wahls, H. E. (1990). "Design and Construction of Bridge Approaches." *NCHRP No. 159*, Transportation Research Board, National Research Council, Washington, D.C.

Walkinshaw, J. L. (1978). "Survey of Bridge Movements in the Western United States, Transportation Research Record 678: Tolerable Movements of Bridge Foundations, Sand Drains, K-Test, Slopes, and Culverts." Transportation Research Board, National Research

Council, Washington, D. C.

White, D., Sritharan, S., Suleiman, M., Mohamed M., and Sudhar, C. (2005). "Identification of the Best Practices for Design, Construction, and Repair of Bridge Approaches." *CTRE. Project 02-118*, Iowa Department of Transportation. Ames, Iowa.

Wicke, M. and Stoelhorst, D. (1982), "Problems associated with the design and construction of concrete pavements on approach embankments." Concrete Society Terminal House, Grosvenor Gardens, London, England.

Wong, H. K. W. and Small, J. C. (1994). "Effect of Orientation of Bridge Slabs on Pavement Deformation." *Journal of Transportation Engineering*, 120(4), 590-602.

Yates, D. S., and Moore, D. S. (2010). *The Practice of Statistics, 4th Ed.* Macmillan, New York, NY.

Yee, W.S. (1974), "Long term settlement study at bridge approaches (North Maxwell)." California Dept. of Transportation, Sacramento, CA.

VITA

Jiwen Zhang was born to Bofu Zhang and Hengxia Wang in Linyi, Shandong, China. After graduating from No. 2 High School in Linyi, he attended Ludong University pursuing a Bachelor of Science degree in civil engineering, where he received several awards and assistantships to support his studies. During the process of pursuing a bachelor degree, he has gained a rich experience in bridge and road construction. After graduation from Ludong University, he continued to pursue a Master of Science in geotechnical engineering both in the Institute of Engineering Mechanics (IEM), China Earthquake Administration and Harbin Institute of Technology under the guidance of Professor Lingxin Zhang. IEM covered all expenses that he spent during master studies. He completed all necessary courses as required by this program in Harbin Institute of Technology, and then focused on structural seismic design and completed one project in the area of soil-structure interaction when he was in IEM. With the dream of learning the most advanced and most cutting-edge knowledge in construction engineering and project management, he entered into United States and continued to be a doctoral student as a research assistant in civil engineering at the University of Kentucky. He has completed one project related to bridge end settlement evaluation and prediction with his advisor Professor Tim Taylor. Two journal papers regrading this topic are going to be sent out for peer review. His research interests include logistic regression, structural seismic design, and deep excavation and support system.

Jiwen Zhang

